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A TRANSFORMATION OF THE HODOGRAPH EQUATION AND
THE DETERMINATION OF CERTAIN FLUID MOTIONS

By T. M. CHERRY
University of Melbourne

(Communicated by S. Goldstein, F.R.S.—Recetved 17 January 1952—Proofs delayed
wn transit to the author from June 1952 to January 1953)
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< S A transformation is given of the hodograph equation of two-dimensional gas dynamics, from the
> — usual variables ¢, & to ¢ and a new variable ¢. The transformation, which suits any gas for which
O 29| pp~7=const. with y>1, is so chosen that certain solutions, which in terms of ¢, § are multiple-
= valued, become single-valued functions of ¢, ¢. Such a solution is represented, over the whole
O domain which is of interest, by a single series in g, ¢, which is rapidly convergent; whereas in
E 9) terms of ¢, 6 different series would be required for different branches of the function,and these would

be but slowly convergent.

By this method we can construct (i) the nozzle flow for which the axial velocity is a prescribed
analytic function of position, in particular trans-sonic nozzle flows; and (ii) various cases of flow past
aerofoil-shaped cylinders placed in a uniform stream. Taking y=1-4, complete numerical results
are given for one case of trans-sonic nozzle flow, and from these other such flows can be obtained by
superposition, and a family of flows of type (ii) is investigated, in which the trailing edge of the
aerofoil is cusped; the aerofoil shape has been calculated for two representative values of the free-
stream Mach number. A limiting flow of this family is found to consist of a set of Prandtl-Meyer
flows, analytically distinct but joining continuously where they abut.

These flows are related to a particular solution of the hodograph equation which is of funda-
mental analytic importance; it stands in the same relation to the set of ‘Chaplygin solutions’ as
the generating function for Legendre polynomials does to the harmonic functions r"P,(cos 6).

PHILOSOPHICAL
TRANSACTIONS
OF

1. INTRODUCTION

In this paper I give a certain transformation of the hodograph equation of gas dynamics,
and illustrate its utility for finding flows that are of physical interest. The theory is con-
structed for the case where the pressure-density relation has the form pp~” = const., with
y>1. The numerical work has been done for the case y = 1-4.

/ |\
A B

— For steady, irrotational, isentropic motion in two dimensions, the hodograph method is
§ — to take the velocity components u, » instead of the position co-ordinates x, y as independent
O H variables, the non-linear Eulerian equations of motion in x, y being then equivalent to a
<= linear differential equation in u, v} it is from this linearity that the method derives its power.
E 8 Now, for a physically significant solution, (%,y), v(x,y) must be single-valued functions,
= but it may well happen—and for the most important types of flow it does happen—that the

inverse functions x(u,v), y(u,v) are multiple-valued; and on the hodograph method we
have in the first instance to determine these inverse functions. It is with this problem of
determining multiple-valued solutions of the hodograph equation that we shall deal.

The idea of the method is analogous to the familiar one, that a multi-valued relation
w = f(z) may sometimes be ‘uniformized’ by giving both w and z as single-valued functions
of an auxiliary parameter. For the hodograph case there are two independent variables,
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584 T. M. CHERRY ON

conveniently taken as ¢, 0, the polar components of velocity. Introducing a parameter
¢ we put

amao=¢—2aarctani%¢, (T)
where ¢ is a constant simply related to the polytropic exponent y ; and we find that for certain
hodograph solutions? x, y are single-valued functions of ¢, ¢, to be determined by solving a
linear differential equation. Elimination of ¢ would give x, y as multi-valued functions of
g, 0, but this is unnecessary and, indeed, undesirable; one works throughout with the
variables ¢, ¢.

Amongst the physically important flows which can be thus determined are (i) the nozzle
flow for which the velocity is arbitrarily prescribed on the axis of symmetry—in particular
trans-sonic flows, (ii) the ‘ aerofoil flow’ past cylinders of various shapes—in particluar shapes
with cusped trailing edge—placed in an infinite stream whose speed at infinity is subsonic.
Both analytical and numerical details (correct to at least 0-19,) have been carried through
for one example of each of these types (see figures 6, 7, 8), and for the nozzle flow tables are
given whence, by superposing other known solutions, an indefinite number of other trans-
sonic nozzle flows may be constructed. As an interesting by-product we find (§ 6, figure 9),
as a limiting case of one of our solutions, a set of Prandtl-Meyer flows which are analytically
distinct, but join continuously where they abut.

In §4 we investigate (i) a particular hodograph solution which appears to be of funda-
mental analytic importance and which, accordingly, we call the ‘principal solution’, and
(ii) a related family of solutions. They are given, in terms of ¢, ¢, by rapidly convergent
series, and the coefficients for three of them are tabulated (tables 1 to 3). Two of them are
the physically important solutions referred to in the preceding paragraph. The principal
solution stands in the same relation to the * Chaplygin set’ of solutions (in which the variables
q, 0 are separated) as the generating function for Legendre polynomials does to the harmonic
functions P, (cos f) ; it is not, like this generating function, elementary, but it has a notably
wide domain of regularity in the variables ¢, ¢. ‘

A brief comparison may be added with other methods for determining hodograph
solutions (Legendre potentials or stream functions) which, as functions of ¢, #, are multiple-
valued. There are, I think, essentially two of these which are analytically rigorous, and
applicable when pp~ = const. (i) The first, due to Bergman (1945, 1948), is to transform
the hodograph equation to the form :

Pw | w
T2 Hage TwF) =0, (B)

where 1 is a suitably chosen function of ¢. (Infact, A = iw, where w is defined in (2-3) below.)
For a first approximation the term wF(A) is omitted, so that w can be an arbitrary harmonic
function of A, #, not necessarily single-valued. An exact solution is then obtained as a series
in which this first approximation is the first term. Now F(1) has a singularity at the value
of A corresponding to the sonic value ¢, of ¢; on this account the series cannot converge in
a domain including ¢,, and for ¢ near ¢, it is at best slowly convergent. (ii) The other method
(Lighthill 1947; Cherry 1947; Goldstein, Lighthill & Craggs 1948; Tamada 1950) is to

t For the specification of these solutions see the last paragraph of the introduction.
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represent the different branches of a multiple-valued solution by series of ‘Chaplygin
solutions’ of the form B4, f(g) . (Q)

For example, a solution having a simple branch point requires four series of the form (C),
analogous to the four expansions in powers of z (two ascending and two descending) for
the branches of (1—z)#; and just as these expansions are only slowly convergent for |z |
near 1, so the series (G) are only slowly convergent when ¢ is near its branch value.

Thus both these methods involve the use of slowly convergent series: the slow convergence
is not necessarily an analytical impediment, but it is a serious practical one as regards
numerical evaluation; and the difficulty is aggravated when the branch value of ¢ is near
the sonic value g¢,.

The method, (iii) say, of the present paper, is specially adapted to deal with solutions
which, as functions of g, 0, have simple branch points along two characteristics of opposite systems
which meet at a point where q = q,; such solutions become, near these characteristics, single-
valued in ¢, ¢, and, as the formulae have no singularities at ¢,, they are free from the features
which in methods (i) and (ii) are associated with slow convergence. But the transformation
(T) does not remove any other singularities which may be present, and it not adapted to
branch points of higher order. Thus method (iii), so far as it is here developed, is more
restricted than (i) or (ii), but in its limited field it seems definitely superior; and this field is
one of great physical importance.

Fundamentals

Let gcosd, gsin 0 be rectangular velocity-components at the point , y, and let Q be any
function (Legendre potential) satisfying the hodograph equationt

(1= Q+ (1—¢/g3) (9, + Q) = 0, (1-1)

where ¢, the sonic or critical speed, is related to the polytropic index y by

2 71 .
Then, writing X=Q, Y=q1Q, (1-3)
the solution of the equations
x/a = Xcosf—TYsinf, yla= Xsinf+ Ycosl (1-4)

for g, 6 in terms of , y gives a possible flow-field; and all flow-fields other than Prandil-
Meyer expansions or contractions are so obtainable. (The unit of speed is supposed so
chosen that ¢ = 1 gives the limiting (cavitation) speed for the flow considered; and « is an
arbitrary length-constant.) The stream function ¢ corresponding to any Q is found from
the consistent equations

Vo= (1= (Y=Xy), ¥p=—q(1—¢)F (X+7,). (1-5)

The Jacobian of the transformation from ¢, ¢ to x, y is given by

19(xy) _ rx) = I0=) X2y ¢lei—] (¥ X,)?
@3(g,0) XTI E LX) = By Y = gy (XY "7;6')

T The similar equation for the stream function i is also called the hodograph equation.
72-2
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Notation

The positive constant ¢, is defined in (1-2). Related constants are f = (y—1)7!; a, the

positive root of the equation
1 1/1
2(l+a) = f =23 = 5 (1), (17)
and A= (20)71. (1-8)

Regarding these we need assume only that y>1, so that £, «, A are positive.

The symbol ¢ is used, occasionally, as an arbitrarily small positive constant, and 4 for
a positive constant whose precise value is unimportant.

Regarding a single-valued function w = f(z) and its multi-valued inverse z = f~!(w)
we use the standard terminology, that a zero z, of f(z) is a critical point of f(z), and the corre-
sponding point w, = f(z,) a branch point of f~1(w). This entails calling corresponding points
by different names, but the alternative of calling them by the same name would seem to be
more confusing.

2. THE TRANSFORMATION

We are to replace the variable ¢ in the hodograph equation (1-1) by a related variable ¢
so that certain multiple-valued solutions €(¢,f) become single-valued functions of g, ¢.
To achieve this the transformation must be properly related to the differential equation.
Suppose that a transformation ¢ = f(g, ¢), where fis regular and single-valued, has in the
g¢-plane a critical locus £ (¢) on which df/dp = 0. To this corresponds in the gf-plane a
branch locus £ (), and a function F(g, ¢) which is single-valued near #(¢) transforms
into a function of ¢, # which, in general, is branched at every point of £ (). Now it is well
known that the only possible branch lines of solutions of a linear differential equation,
apart from singular lines of its coeflicients, are characteristics of the equation. Hence if a
multi-valued solution (g, 0) is to transform into a single-valued function (g, f(q, P)), it is necessary
that the branch locus £ (0) should be characteristic for the hodograph equation; and the sufficiency of
this condition will in due course be verified.

2-1. The transformation to be employed isT

Lo _gsing )
0+ik = ¢ 2ocarctan1_qcos¢, (2-1)

where the positive constant « has been defined in (1-7) and « is any constant. From the
purely analytical viewpoint the case « == 0 is converted into the case « = 0 by replacing ¢ by
6 —ik, and since this replacement does not affect the hodograph equation (1-1), the two
cases are essentially equivalent. But for physical significance we require 8, g to be real, with
0<g<1, and then, as we shall see, there are two distinct cases, (i) x = 0, (ii) « real and not
zero.]

t In the applications to be made, the inverse tangent will retain its principal value, so 6 is effectively
a single-valued function of ¢, ¢. The transformation is equivalent to one previously given by the author
(see Cherry 1947, §6). .

1 The case where k = k’+ik” with x”#0 is reduced to the case k =k’ by a real translation on 0, and
to this corresponds by (1-4) a rotation of the xy-axes. Hence without loss we can often take k" =0.
[Added in proof: However, if a solution of (24) is converted by (2'1) into Q(g, 0, ', "), different values of
«” give linearly independent functions of g, 8. Hence, for example, we can deduce from table 4 (p. 618) an
infinity of independent solutions.]
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 587
The critical locus where d6/d¢ = 0 is

D(q,4)=1—2(1+a) gcosp+ (1+2a) g% = 0. (2-2)
Solving for ¢ and substituting in (2-1) we obtain, as the branch locus in the gf-plane,
T g JQZ/Q?—I] _ .
0—}—1/(———:{;[% arctan\/laqz arc tan g = +u(q), (2-3)

where g, is the ‘sonic speed’ defined in (1-2) ; and it is easily verified that this is characteristic
for the hodograph equation (1-1). Hence the transformation is suited to the equation.
In terms of the variables ¢, ¢ it becomes

LIQI={1-2(1+) geos ¢+ (1+20) ¢}y, +4Q, +Q¢¢~l-2ﬁig}

agtsin ¢(Qq¢“/fq_gq¢2) oo 1 fiﬂ 2D =0, (24
where Q, means 9€)(g, ¢)/dq and not, as in (1-1), dQ(q, #)/dq. The suitability of the trans-
formation is verified by the fact that, on the critical locus (2-2), the coefficients in (2-4) are
regular and those of the second derivatives are not all zero.

In general, a single-valued solution )(g, §) of (2-4) is converted by (2-1) into a multiple-
valued function of ¢, # with branch points on the locus (2-3). Itis easily proved that 924/d4?
vanishes only when sing = 0 or ¢ = 0, £ 1, so the said branch points are in general simple.
If k = 0 they are real in the supersonic range ¢,<<¢<1; but if k=0 there is only one real
branch point, at which § = 0 and ¢ has the subsonic value satisfying

arctath 179 2/%) 1arctath<q’ ) |&|. (2-5)

"To find the position co-ordinates from a solution (g, ¢) of (2-4) we use (1-4) along with
the transforms of (1-3): ‘

20 sin ¢L 1—2gcos¢+q¢?) Q)
X=0Q+=5~, Y= (1—2 qg 7). (2-6)

where D is given by (2-2). The equations (1-5) for § can similarly be put in terms of ¢, ¢.
The transformation (2-1) can be put in the form

gex—iﬁ__ (l_ge—iqﬁ)a
ge % \1—qeid)’

(2:7)
which suggests using § = g €', 7 = ge~i¢ as alternative variables. With these, (2-4) becomes
L[Q) = {1~ (1-+2) &) Oy {1 =5) (€0 + 09 —o( ;1) (402, +02,)

st (Mg 1m0 )
or if we use § and 7 = £y = ¢? as variables,
LIQ)={1 (1420 7 (10, +Q,+£2,) - 0, 10
—9‘%179 (72Q,,+TQ +20EQ), 820y + Q)

—-oc(1+ot) (11 +§2°‘)§ QT+~——£1—”5~2@»— (1Q, +8Q;) 1 = 0. (2-8)
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2.2. We proceed now to discuss the transformation (2-1) in the physically significant
cases, where 0, ¢ are real and 0<C{g<1.

Case (i), k = 0. It is necessary that ¢ be real, and (for 0<<¢<1) we shall secure this by
taking ¢ real; it may also be secured when ¢ is unreal, but this subcase will be noticed under
case (i1). Consider the variation of ¢ with ¢, for ¢ fixed. The points where 30/d¢ = 0, given
by (2-2), are real when ¢,<¢<1 but unreal for 0<<g¢<¢,. Hence it is easily proved that,
taking ¢, ¢ and ¢, 8 as polar co-ordinates, the circle ¢<<1 in the ¢g¢-plane is in continuous
one-one correspondence with a ‘Riemann’ surface over the ¢f-plane (figure 1) which is
smooth for ¢< ¢, but is folded like a filter paper for ¢, <<¢<<1; as ¢ increases from — to 7,
¢ increases from —m to the value w(g) given by (2-3), then decreases to —w(g), and then
increases to 7. Thus for ¢,<¢<1 and —w(g) <f<w(q), ¢ is a three-valued function of 0, ¢,
but elsewhere in ¢<1 it is single-valued.

e
H

(i) (i)
Ficure 1. (i) ¢¢-plane, (ii) gf-surface, for x =0.

Case (ii), k#=0. For definiteness take « to be real positive. Since g, § are to be real, (2-1)
cannot be satisfied by a real ¢. Putting then

Y (29)
the separation of (2-1) into real and imaginary parts gives

, _sinh 2A({—«) +¢*sinh 2({+A{— k)
s¢'= 2gsinh ({4 21— 21) ’
2¢ cosh { sin ¢’ — ¢?sin 2¢'
1—2gcosh{ cos¢’+q%cos 24"’

(210)

§ = ¢’ —aarc tan (2-11)
where 1 = (2«)~!. For the chosen constant «, (2:10) gives the connexion between ¢ and the
real and imaginary parts of ¢. It is conveniently represented as a surface on which gcos ¢’,
gsing’, { are rectangular co-ordinates. Any section { = const. of this surface is a circle
having the ends of a diameter at

sinh A({—«) ;L )
1= Ginh €+ ai—n> ¢ 70 (2:12)
cosh A({—«) ;L
and 77 cosh (C+AE—Ak)’ ¢ = 0.

(2:13)
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 589

Hence we may prove that the part of the surface for which ¢<1 consists of two detached
parts (figure 2) ; a “gramophone horn’ extending from the circle { = 2Ax(1+421)"1,¢ = 1 to
a ‘vertex’ C at { =-+o00, ¢ =0, and a ‘spindle’ extending between vertices £ at { = 0,
g=1,¢'"=0and F at { =—o0, ¢ = 0. The axis ¢ = 0 cuts the horn at B, where { = «,
and the tangent plane at the point (2-12) is parallel to the axis at the point 4 where {

satisfies :
(1424) sinh { = sinh ({+21{—2A«), (2-14)

c

F

Ficure 2. Hodograph (¢¢) surface, for x> 0.

an equation having just one root. By (2-9), (2-10) we can express D, equation (2-2), in the
form

D =oa(l—¢? {sin§12&ﬁ—12)/lsgfl—h2§l/<) — 1} +2i(1+a) gsinh { sin ¢’
2(14a)sinh {

+anh (1 200—214) {sinh?A({—«) —¢?sinh? ({+A{— )}, (2:15)

whence it follows that 4 is on the critical locus D = 0, and is the only point of the surface
on this locus; and it is easily verified that ¢, <g¢,.

The variation of ¢ on this surface is given by (2-11). Here the inverse tangent increases
by 27 as we circle around any section ¢ = const., so to make 4 single-valued on the surface
we cut it down the outer generators CD, EF (the loci of the point (2-13)) and take the
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inverse tangent to be zero on the inner generators (2-12). Then, taking ¢gcosf, ¢gsinf as
rectangular co-ordinates, it follows that the horn is in one-one correspondence with a
Riemann surface bounded by an arc ¢ = 1 and rays 6 = 4-an (figure 3);7T there is a simple
branch point at 4, like that on the Riemann surface of (el —g,)}, and the principal sheet
is regular at B, ¢ = 0.

The spindle part of the gg-surface, cut along the outer generator EF), is in one-one corre-
spondence with a sector ¢<<1, —amr <8 <am, with ¢ = 0 corresponding to { = —o0.

By taking the limit, as x— 0, of the correspondence just discussed we get a fuller view of
case (i). The part of the horn below 4 shuts down on to the part of the plane { = 0 between
the critical locus (2-2) and the circle ¢ = 1, while the part above 4 remains as a horn ex-
tending from the critical locus to { = +oco. The spindle degenerates into the conjugate horn
together with the interior of the critical locus. These horns, cut along their outer
generators, are in one-one correspondence with congruent ¢f regions shown in figure 4,
where the rays CH, CG, FH, FG are 0 = 4-am and the curves AH, AG are § = +w(q) (the
same curves as in figure 1), meeting the rays where ¢ = 1.

D H H
C g c F
: D G G
O] (i)
Ficure 3. Two sheets of hodograph Ficure 4. Subsidiary sheets of
(¢0) surface, for k> 0. q0-surface, for k =0.

2-3. Inversion of the transformation. It will be sufficient to restrict ¢ to be small. Then for
the inverse ¢ = ¢(q,0) of (2-1) there are three branches, belonging to neighbourhoods of
B, C, Fin figure 2. (i) For the neighbourhood of B we find the principal branch

.2 2D (no+-n) o\ s .
= Rt L A —na; nt1; 21

) 9+1K+¥n2 T'(n) T(n) q"F(noa+n, —no; n+1; ¢?) sin n(0+ix) (2-16)

where F denotes the hypergeometirc function. This may be established by seeking the

Fourier series for ¢—@—ix, as in the solution of Kepler’s equation. (ii) Near the point C,

where g ~ 0 and { ~ 00, (2-7) gives the first approximation ¢ e~ ~ 1, and higher approxi-
mations to the solution are easily deduced, e.g.

ge it =1—(1 —¢?) (qex1) Vet O(gex10)/e, (2:17)

(iii) For the third branch (neighbourhood of F) there are similar approximations.

+ The polar angles ¢’, 6 are not single-valued on the respective surfaces, and for the rays to be described
as @ = + o we should cut the surfaces along BR. In (2-12) we cover all cases by the convention that, on BR,

¢’ =0 and ¢ is negative.
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3. GENERAL SOLUTION FOR TRANS-SONIC NOZZLE FLOW

It is desired to find the flow in a two-dimensional nozzle, with an axis of symmetry, for
which on the axis the speed ¢ is a prescribed function of the position co-ordinate x. Let this
function ¢(x) be analytic, and strictly increasing over the whole or part of the range 0<{¢ <1
as x increases over some finite or infinite range. Then x is an analytic function of ¢, say
x = f'(q), regular and increasing in the whole or part of 0<<¢< 1; for simplicity of statement
let it be the whole range. Taking the velocity-direction § to vanish on the axis, the potential
Q of the desired flow is to be an even function of 4, and by (1-3) and (1-4) we are to have
Q, = 1"(q) when § = 0.

Hence Q is to be that solution of the hodograph equation (1-1) for which, on the axis
# = 0, the Cauchy data are Q = f{(q), Q, = 0. Since the coefficient of Q,, is non-zero for
0<¢<gq, but vanishes for ¢ = ¢,, the desired solution certainly exists and is regular for
0<¢<¢,—¢ and 0 sufficiently small, but the question of its continuation as ¢ increases past
q, presents a difficulty. This difficulty is overcome if we use the variables ¢, ¢ (with x = 0
in (2-1)) instead of ¢, §, and find Q from the transformed equation (2-4). Supposing at first
that 0<{g<g,, Qis to be an even function of ¢, with Q = f(g) for ¢ = 0. However, for ¢ = 0
the coeflicient of ; becomes (1—¢)? (1+¢+2ag)/(1+¢), which is regular and non-zero
in the whole range 0<<¢<1. Hence the Cauchy data Q = f(¢), Q, = 0 extend over the
whole range, and there is a solution Q regular for 0<<¢<<1—¢ and ¢ sufficiently small.

The position co-ordinates #, y are now to be determined via (2-6), and we may prove as
follows that the apparent singularity of these formulae on the critical locus D = 0 isillusory.
For when (¢, ¢) is confined to this locus we have

‘_192 —Q. 10 dg dp (1+a)cosg—(1+420)¢q
dg " "¥dg> dg (1+a)gsing
and thence we find that (2-4) reduces on the locus to
dQ,  4q
dg 1—g™%

Hence, on the locus, 2y =C(1—¢%)~*, where C'is constant; at the point of the locus where
q =4, ¢ = 0and Qy = 0since Qis even; so C = 0 and ) vanishes on the locus. And finally,
since the functions are analytic, ,/D must be regular on the locus.
Regarding the correspondence between the xy- and gg¢-planes, we have on the axis ¢ = 0,
by (1-6) and (2-1),
10(%y) q(l—¢°) XZ1—2(1+a)g+(1+22) ¢ q(1+q) X7

@d(q,9)  ¢lgs—1 (1—-9)° - lglg
and here X, = f"(q), which by hypothesis is regular and non-zero. Hence, near the axis,
the correspondence between the two planes is one-one; and by § 2 the xy-plane is in one-one
correspondence with the ¢f surface of figure 1, so that, for example, any supersonic velocity
(¢,0) for which |f|<w(g) occurs at three distinct points (x,y). In particular, the locus
¢ = 0 consists of the axis y = 0 together with a curve cutting the axis at the point where
q = q,; and hence follows the well-known convergent-divergent pattern of the streamlines.

Vor. 245. A. 73
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To calculate Q) we may substitute in (2-4) a development Q = f(q) +¢%/,(q) +¢*/>(q) + ...
and equate coefficients of powers of ¢. Hence, in succession, f}, /5, ... are determined in

terms of the datum function /' (g) and its derivatives. Alternatively, a development in powers
of sin ¢ or tan ¢ could be used. For such developments to be of practical use it is necessary
that the convergence be reasonably fast when ¢ is ‘not too small’. This matter will not be
pursued here, in view of the suggestion that (2-4) invites solution by a Fourier series in ¢
rather than by a power series, and that a Fourier solution may be expected to converge
uniformly for all real ¢. In §4 this suggestion will be followed up, and § 5 will give a special
case of nozzle-flow to which the investigation leads.

4. THE PRINCIPAL SOLUTION
The hodograph equation (1-1) has elementary solutions

V) Yy

e ¢F(a, b,; v+1; ¢%), (4-1)
where the parameter v can have any value other than a negative integer, and '

a, = (v +p) +5 A1 +20) v+ 55, b, =30 +p) -5 J{(1+26) 2 +5%; (42)
as usual, F denotes the hypergeometric function. We shall choose a certain linear com-
bination of these solutions, (4:19) below, express it by means of (2-1) in terms of ¢, ¢, and
prove that the resulting function is regular, apart from poles on the critical locus (2-2), in
a domain of the complex variables ¢, ¢ which includes the segment 0<{¢<(1 and all real ¢.
This is an indirect method of attacking the differential equation (2-4), whose justification
is that it penetrates deeper than does the direct attack. ‘

Some preliminary clearing of ground (§§4°1 to 4-3) is necessary. For shortness we write

Fla,,b,;v+1; ¢%) = F,(q?). (4-3)

4-1. The poles of F,(q?), and the function k,. As a function of v (for fixed ¢), F,(¢?) is mero-
morphic, with poles at v = —1, —2, .... Its residue at v = —n is (Cherry 1947)

—h, ¢ F,(¢%), (4-4)

Ia,) I'(14v—5,)

here h, = 2 % .

v » = [a,—v) D(1=5,) T(r) [(1+7)
In (4-4) there is involved only the value of #, when v is a positive integer 7, and (4-5) then

reduces to a form symmetrical in a,, b,—as is necessary since F(a,, b, ; n+1; ¢?) is symmetrical

in these arguments. For general v, however, /4, is unsymmetrical, and the convention is that

in the definitions (4-2) of a,, b, the radical is real positive when v is real positive, so that then

a, is real positive and a,>5,. On account of this radical, &, has simple branch points where
v=4if(14+2f)7t = +ic.

We shall take the v-plane to be cut between these points; then in the cut plane a,, 4, 4, are

single-valued, and we shall require to know the poles and zeros of 4,. These occur only where
one of the arguments v, a,, a,—v, 1+v—b,, 1—5, is zero or a negative integer. Writing

v = £+1iy, we find from (4-2) that b, is real on the axis y = 0 and also on the ellipse
E2(4-+2(F) +27°f = 1,

(4:5)
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whose foci are at the branch points v = +ic; where the ellipse cuts the real axis, b, is sta-
tionary. As v moves along the real axis from +o0 to (4+2/f#)~%, thence round either half
of the ellipse to —(4+2/#)~%, and thence to —o0, b, increases steadily from —oo to -+o0.
its values on the ellipse ranging between the positive values

i) vl i)

Since (4-2) gives a,—v = f—b,, a,—v runs on the ellipse between the same two values.
Hence the following facts: ‘
(i) For v on the positive real axis, h, has neither poles nor zeros;

(ii) On the ellipse, h, has no poles, and has zeros at the conjugate pairs of points where b, = 1,2, ...,
which exist if f2 (244 ./2)/7; one or more pairs of these zeros is in the right half-plane if f>2; for
f = 2:5 they are v = 0-14-1-091i (where b, = 1), and v = —0-34-0-8431 (where b, = 2).

(iii) On the negative real axis h, has an infinity of both poles and zeros.

The behaviour of 4, when | v | is large may be found by noting that (4-2) give

&= W1+ +3f+0(7), b= —vat 1f+00-) (4:6)
and thence, with Stirling’s theorem, approximating to the gamma functions in (4:5); we
obtain, for | argy | <m—e, omh, — 821+ 0(v1)}, (47)
where 0 =a*(1+4a)"l > (4°8)
Also (4-2) give, in the cut plane,

a_,=b,—v, b_,=a,—v,
and thence follows hh_, = ~Sinﬂ(z(2’i;;}3 Z :11;1 (bl’)’jjf)liw (4-9)
4-2. A Fourier series related to the transformation (2-1). From (2-7) we obtain
eM0veip — (] —geid)ra (1 — geis) e, | (4-10)

v being any constant. Expanding by the binomial theorem on the right and collecting like
powers of e'¢ gives

i S o D(r—va)
ivf-ve i+r)¢ , o L,
: 2 Mo Ty T isr—es rb 1 )
S e I'(r+va) .
-N¢ o ¢ F(— . .2\
+r§16 I'(va) F(r_,_l)qﬁ( va, r+vo; r+1; ¢2);

it may be noted that I'(r £-va) /I'( 4-va) is a polynomial in v, and hence is non-singular when
r4va is zero or a negative integer.
Now when 7 is a positive integer, and v is arbitrary,

. I'(—va—s)
o () T(1 =)

g SF(va, —s—va; 1—s; ¢%) = Llatr)

—_ N T — . . 2
I‘(V&)I’(r+1)qF( va,r+va; r+1; ¢%),

(4-11)
and on the left we can without ambiguity replace s by r and suppress the limit sign; by sym-

metry, the resulting formula is then valid when 7 is any integer (the case r = 0 being evident).
73-2
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Substituting in the preceding equation, it becomes, for the case where v is an integer n
(not necessarily positive),

o L I'(r+ na)
inf-nx — i(n-r)¢
¢ rzwe ['(na) D(r+1)
_ 2 o—irg I'(r+n+ne)
2. D) D 1)
Supposing ¢ to be real, the expansion on the right of (4-10) gives a double series, the
moduli of whose terms have a sum less than

qF(—nayr+na; r+1; ¢%)

g (—na, r+n-tnoy r+n+1; ¢2).  (412)

(1—=[g )=, (4:13)
and putting v = n, thisis a bound for the sum of the moduli of the terms on the right of (4:12).
Thus (4+12) is valid for ¢ real and | ¢ | <1.

4-3. Asymptotic formulae for F,(q?), etc. (i) The behaviour of F,(¢?), defined by (4-3),
when v is large has been investigated by several authors (e.g. Cherry 1947) ; the result which
will be subsequently needed is: when 0<q<<q,—e¢, and v is large but excluded from small neigh-
bourhoods of the negative integers,

B = oLy 8 e 1 00D), (#14)

where § is defined in (4-8) and
2 2_ 2
u = arc ta\nh'\/(l g /qs) ! — arc tanhA/(—q*‘—%)>O.
9s 1—¢

(ii) For the hypergeometric function which occurs in (4-12), investigations similar to
those just mentioned give: Under the same conditions on q, v,

F(—va, r+v+ va; r+v-+1; ¢%) = ( 1= 2/q> Q7q —v(gv {10 1)), (4-15)

the remainder-term being uniform when 7 is a fixed integer but not when r ~ 00 ; here

«/ ( ) 's/ (1 - 2/ qs) s
. 4-16
©=ua q) (@ —¢") ¢(1+a) (#16)
(iii) From the formula (2-16) it is seen that the function F(v+4va, —va; v+1; ¢?) is
intimately bound up with the transformation (2-1), and from (4-6) we see that it is in some
sense an approximation to #,(¢?). From (4-11), its residue at the pole vy = —n is

—h¥ ¢ F(no+n, —na; n+1; ¢%),

Fva+4v) Dva+v+1)
where hf = I've) Mva+1) I'(v) I'v+1)°

and the analogue of (4-7), for v ~oc0 with |argy |<m—e, is
2l = 0-2{1+0(v~1)}. (4-18)
4-4. The principal solution of the hodograph equation. We define this as

& D(na+tn) h, einf=n

%= 2 Mat1) T )( T ) TR, (419)

(4-17)
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a linear combination of the elementary solutions (4-1), and shall express it in terms of ¢, ¢.
The a priori reason for supposing this solution to be of importance is not relevant to what
follows, but is sketched in appendix 2. We shall prove (§§ 4-4, 4-5) the following

THEOREM. The function (), under the transformation (2-1) is identical in tlze sense of analytic
continuation with

QO—_— (1___ 2)1 1B

(1+a){1—2(1+a) gcos g+ (1+2a) g% 1+ac

+G(g%qe?),  (420)

where the function G, given explicitly by (4-33), us regular provided (i) %q <1and #(qe'?) <1, or
(ii) 0<¢?<1 and qe'f is not on the ray 1 <qe'? < 0.

(i) By Stirling’s theorem, I'(na+n)/I'(na+1) I'(n) = O(8~"n~%), and by (4:7) and (4-18),
k. /B = O(1). Also by (4-14), for 0<<¢<gq,, ¢"F,(¢%) = O(d"e ™), so when £ is real the series
in (4-19) is dominated by X An~*e ™, and converges absolutely since > 0. Substitute for
etin0+i0) from (4-12). In view of (4:13), the resulting double series is dominated by one

L]

‘whose sum is > An~*e™"(1 —q)~%", s0 it converges absolutely when e~* < (1 —¢)%*, which is
1

true for ¢ sufficiently small (since ¢— 0 gives u—+-00). Hence when 0, ¢ are real and ¢ is
positive and sufficiently small we can rearrange the double series in the form

Q= 3 eC(g), (421)

where
~C,(g) § D(na+n) '(r—na—n) F,(¢%) F(no,r—ne—n;r—n+1; ¢2)
775\ = 2 I(na+1) I'(—na) I'(n) D(r+1—n)

" % h, (no+-n) I'(r+na+n) ¢*F,(¢%) F(—na,r+no+n; r+n+1; ¢2)
- h¥ I (no+-1) I'(na) I'(n) I'(r+1+n)

. (4-22)

(i) When 7 is a positive integer we can find a closed formula for C,(g). Consider, as a
function of v, ‘

I'(r—v—va) Fva,r—v—va; r—v+1; ¢
2\ 2NV 2 ] s ] .
Fonld®) = =T=9) i =2 =2 Fo(g?) Tl (eny
The first factor has simple poles atv = 1, 2, 3, ..., the second is regular, the third has simple
polesaty = —1, —2, —3, ... and the fourth is regular. Since
I'Q—v)  T(v+va)siny(l+a)r 1 _ sinnam
PQ—v—va) ['(v) sinvm * Dle+1)T(—na) 7 °

the residue at v = n>> 0 is equal to the term shown in the first line on the right of (4-22) ; and
from (4-4) and (4-17) the residue at v = —n is the term shown on the second line. Aty = 0,
1,,,(¢?) is regular. For v ~c0, with r fixed,

F'a—y) I'(r—v—uwa) (r—1—v—uva)... (1 —v—va) (1+oc)”"

I 4+r—y)PQ—v—va) (r—v).. (lmv) v {1+O( —1)}

so from (4-14) and (4-15)

oy . (1= ¥ Qr(1+a)~
f; v(q ) - (1 2/q2)§ v

RN}
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provided v is bounded from the integers. Hence, integrating f, ,(¢?) round an infinite circle,

(1=g2yia-p
(1= gIg?) (14 4)

(iii) When r is zero or a negative integer —s, f_ V‘(qz) has (from its second factor) addi-
tional poles at v = 0, —1/(1+a), ..., —s/(1+a). Taking account of the new residues, and
writing (1-+a)~! = u, we get

_ ML=g?MmD Q)
0 =“ =gy ()
by (ST k) By () F(hp—k k—s; Bu=s+1; %)
= D(ku—s+1) (s—k) k!

Clg) = {(1+0)qQy  (r>0). (4:24)

. (4-25)

When s> 0 this formula masks the regularity of C_ (g) at ¢ = 0, which is directly evident
from (4-19) and (4-21), and a better formula is obtained as follows:
(iv) By appeal to (4:11), with r = s+ and v = +n, (4-22) is converted into

4C_.(g) = E D(na+n) I'(s+na+n) ¢*F,(q%) F(—na,s+noa+n; s+n+1; ¢%)
=S nel I'(na+1) I'(no) I'(n) D'(s+n+1)
i § h,L(na+n) I'(s—na—n) F,(¢%) F(na,s—na—n; s—n+1; g%
w1 k¥ D(na+1) I'(—na) I'(n) I'(s —n+-1) ’

a formula, in which s is a positive integer, closely resembling (4-22). The second term on
the right is the sum of the residues of &, f; ,(¢%)/if atv = 1,2, ..., and the first term is the sum
of the residues of 2%, f; ,(¢?)/h_, atv = —1,—2, .... By (4-17) k¥ has neither poles nor zeros
in the right half-plane, so from §4-1 4,/A¥ is regular in this half-plane; while 2% /A_, is
regular in the left half-plane, except for simple poles at the zeros of 4_, which lie there when
f>2. Also h,/k¥, k* [h_, are 14+ O(v~1) at infinity in the respective half-planes.

By Cauchy’s theorem, therefore, we obtain the analogue of (4:24):

(1 g2)-»

CL0) = o (O ) (>0, (#20)
where e e e I 2 (v27)

here f, , is defined in (4-23), the notation foj)(ﬂ means that the far parts of the path lie on
the imaginary axis but that the central part.;;sses to the left of the branch points 4-ic and of
the unreal zeros of /_,, and for fi:ﬂ the path similarly passes to the right of the branch
points; and both integrals are principal values, lim i

(v) When we substitute from (4-24) and (4 26§Z;d &grs =0) (4 25) into (4-21) and sum

the terms involving Q, we obtain the formula (4:20), with

Glehge") =Sqa(g)em. (+:28)
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This has been established for 6§, § real and ¢ sufficiently small positive, conditions which are
sufficient for the identity of the two functions, in the sense of analytic continuation. Re-
garding this continuation, the essential thing is of course to discuss the function G(¢?, g €'%).

4-5. Analytic continuation of G(¢?, ge'?). (i) The desired continuation is achieved by means
of a trivial adjustment of the formula (4-27) for g,(¢%). Choosing two points on theimaginary
axis beyond v = +1ic, say v = + 2i¢, (4-27) can be written

( 2) :szic(—)}lik_vﬂw_(m)__l__fzic(ﬂMﬂg(—qw
8D " o) g h_, 2m J _yi 7*
—2ic
Tom (L J_ w) ( . v) Jun(g?) dv. (4:29)
- -
Now (4:17) gives P RE — sin? pogr sin® v

m2sin?p(1+a)m’
and thence from (4-9)

h,h_,  sin(a,—v)mwsinb,msin?v(1+ao)w

v -y
h¥h%E, sina, 7 sin (b, —v)ar sin? vam

__sinvn{sin (a,—b,—2av —v)m cosvm—sin (a,—b,)m+cos fm sinv(1 + 2u)7}
2sina,m sin (b, —v)m sin? vam ’

and by (4-6) this is 1+ O(sec 2vam) for v ~ +4-ico. Since also A*,/h_, = 14+ 0(v~1), we have

2 by O(sec 2vam) (4-30)
h_, Kf '

Thus by combining the integrals as in (4-29) we replace factors which for v ~ 4100 are only O(1)
by a factor which is exponentially small. The remaining factors, involving ¢, can thus become
large without destroying the convergence.

For shortness, now, let us denote the right-hand member of (4-29) by

* _h, : .
- f ( = h*) £ (g?) dv. (429 bis)
Substitute the value (4:23) of f, ,(¢?), and observe that

I'n—v—va)
I'n—v+1)

I'(—va)

Flva,n—v—va; n—v+1; ¢?) = o

1+)
f tn—v(l+oc)—-l(t__ )voc(l__, 2t) vocdt
0

(4-31)

provided (as is the case for all z,v here in question) the real part of n—p(1 +«) is positive;
the path of integration is to have ¢ = 1 inside it and ¢ = ¢~2 outside. Thus

G(g? qei?) = ? 7°g,(g%) ei?
L orkE, RN\ =) I(—va) F,(¢?) dv &
== (i o 73)

in n—v(1+o)—1 ve . —-ya
o, k) eml(i—v—wa) 2 7C R O
(4-32)
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the summation under the integral sign being justified by absolute convergence when ¢ is
real and 0<<g<{¢q,—e¢. Hence, under the conditions for which (4-20) was proved,

1 h%, A\ —v) I(—va) F,(¢?) dv @0 g0+ (1) (1 —q%) 7> ds
Jigsor ) J

2 geig) — T
Clg%9¢%) = =g |G or 7 omil(1—v—va) 0 gle ¢

‘ (4-33)
where the notation means the sum of four integrals as in (4-29).
(ii) To establish the regularity of G for Z¢?< 1 and Zqei¢ <1 itis sufficient to prove that,
of these four integrals, those along the imaginary axis to +-ico converge uniformly provided
[ —b—c|=h+2, g e —}—o|>}+2 (434

for any positive e. By substituting for F,(¢?) from a formula resembling (4-31) the integrand

becomes
hE, R\ T(1—=v) I(—va) I'(1 +v) ['(a,—v) )
(h__: }Tf,") 4m T (1 —v—va) ['(a,) Sidz (4-35)
where
(1+)t—v(1+oc) t—1)7 (1 — 2t -Vacdt (1+)
Jy = fo ( qwl)e__i(qﬁ_tq ) , Jy= . (o7 (t—1)7"% (1 —¢%)~»dt. (4-36)

Ficure 5. Path of integration in #plane.

We first find a bound for J;. When » = iy, with x real, the modulus of its integrand is
|g~le i?—¢|~!erS, where
S = (1+a)argt—oaarg (t—1)+aarg (1—qg%)
= —(1+0) 0+ o -+a,
the notation being that of figure 5. Here the points O, B, I, 4 are t = 0, 1 —2¢, 1, 1 + 2,
so that the circle OCA is | ¢—%—¢| = §+e¢; the outer circle is | #—}—¢| = $42¢ and by
(4-34) the points ¢~2, ¢~' ™% are not within it; the angles 0, ¥, y are positive in the figure,
but may vary to negative values as ¢~2, ¢ move.
For t on the lower semicircle OCA, OtA is a right angle, so §' = — (6 +ay) +ay-+4am; also
y < 4w since ¢~2 is outside the circle OCA4, and 6+-az has a positive lower bound.t Hence
S<am—«k, (k,>0). (4-37)

1 Either 6 or 7 is not less than its value when /¢ is perpendicular to 04, so
0 +an >arc tan (2¢)} max (1, &) = «,.
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For t on the upper semicircle ADB, centre I, § = (14a) 6’ +ay+ay, where §' = —60=>0, ¢y <0,
and y<2n.t Hence S <$am provided (1-+«) " <%am, and since §’ <arcsin 2¢ this condition
is secured by choosing ¢ sufficiently small. "

For t on the segment BO, = —, 6 = 0 and y <, so S<0. Hence the condition (4-37) is
satisfied, for ¢ on the path OCADBO, provided ¢~2 satisfies (4-34),; so for x positive,

exp (uS) <expulam—«,).
Also (4-34), gives, for ¢ on this path, | g7'e 4 —¢| >¢; so for v = ix with # real positive,
| Jy | <m(14+2¢) e lexp{|v| (am—«k,)}. (4-38)
When g is negative the same bound for J, is obtained by integrating along the reflexion
of the path OCADBO in the real axis.
A bound for J, is easily deduced by comparing the two integrands in (4:36). We have

4, = V(1 +a) + 3+ 00, b, ——va+3f+ 00,
and hence

|yl <A exp{|v] (e} [ |84 5—1) 8 (1 g2) 48| it |,

where the integral is finite since £>>0. Finally, by Stirling’s theorem the gamma-function
factor in (4:35) is proved to be bounded for v ~+ico. In view of (4:30), therefore, the
integrand is O{exp—|2vk, |} when v is pure imaginary, and this establishes the desired
uniform convergence under the conditions (4-34), and thence the regularity of G(¢2, gei#) for
Zq*<1 and Zqel?<1.

It is clear that we can enlarge the domain of one of 472, ¢~!e~i¢ and retain the uniform
convergence provided we suitably contract the domain of the other. In particular, if ¢2 is
real, with 0<<¢?< 1 —e¢, the path for J, can be taken to and fro along the segment 0, and
if ¢71e~i¢ is distant at least ¢ from this, | J, | <2 'exp{|v|an}. The estimate for J, is
unchanged, and the uniform convergence follows.

The theorem stated in § 4-4 is thus established.

4-6. Asymptotic behaviour of g,(q?) for n~oco. For simplicity let 0<<g?<1—e¢. In (4:29) let
the paths for the first two integrals be moved to the imaginary axis, with infinitesimal
indentations round v = +-ic. If #>2, the path for the first integral, during its displacement,
crosses two or more zeros —v, of i_,, so we get

RS -(2%) . :
8.(q%) = 3 Em I i k2~ +integrals  (f, = dA,/dv).
k
The integrals, whose integrands have the form shown in (4:32) with the symbols ¢~ einé
omitted, may be estimated as in §4-5; using the result

(1+)
f Va1 (¢ yye (1 g2g) v di| < (2/n) exp {| v | em),
0

which (by integration along the real axis) is valid for ¢2<1 and v pure-imaginary, the
integrals are proved to be uniformly O(n™1).

T This is a crude estimate; at the point ¢-2, a radius of the circle ADB can subtend at most 7, and OI
can subtend at most 7.

Vou. 245. A. 74
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In the first term on the right, substitute the value (4:23) of f,
for n large and v bounded

(¢?), and observe that

—vE

F(—va,n+v+va;n+v+1;q¢%) = (1-—92)"“{1—!—0(72‘1)},[
Dlntvtve) 0y o (4-39)
T(ntr+1) =w* {14+ 0(n1)}. ‘ I
We obtain
RET(1+v - - ~
gn(qz) = _%h;kl"zl_(l_vk_l_kzka) (1——92) k F—vk(qZ) n’k 1—|—O(7l 1)7 (4’40)

which is the desired asymptotic formula.

If <2 the first term on the right is absent, and g,(¢%) = O(n"!). If §>2 the dominant
terms are the pair for which %, is largest, and since Jv, %0, g, is an oscillatory function
of n, whose order lies between n~! and 7i*~1, since (from §4-1), Zv, <}.

Essentially because of (4:39), an improved estimate of g,(¢?) is to be sought by displacing
the “finite parts’ of the paths of integration in (4-29) as far as possible to the right. For the
first integral the path gets caught on the branch points v = +ic, and it is from these that the
principal part of the integral is contributed. Hence the remainder term in (4-40) can be
shown to be in fact O{n~(log n) ~#}.

4-7. Calculation of g,(q?). The best method is to use the differential equation (2:8).
Substituting the expression on the right of (4:20) we obtain
Li[G] =—pr(2—4r) A=) ¥[(1+a) (1= ¢%),

and then putting G = % &g, (1) and equating coefficients of powers of { we get the general
recurrence relation 1
(1+4a) (1—71) r2%g0 +{(n+1+42na+a) (1 —7) —20(1+a)27} 78, +nofn— (1+a) (1420) 7} g,
= {1+ (1+20) }{(1—7) (g1 +ng,r) —a(l+a) (2rg, 1+ (n—1) g, )} -+ 2a(n—1)2g, ,
—(1+a) 1=1)1g; s —{(n—1+0a) (1—7) —20(1+0a)? 1} g, s —a(n—2) (n—3—2) &,_,.
(4-41)

This is valid as it stands for n>>3, for n = 2 it is valid if we put g, = 0, and for n = 1 we
replace the right-hand member by

—pr(2—pr) (1—1)"17[(14a).

Hence we can solve successively for g;, g,, -... From §4-5 it is known that the g, are regular
in | 7] <1, and the condition of regularity at 7 = 0 suffices to determine them uniquely from
the differential equations. Thus we find, in the first instance,

1
R e (S R G VR (RO (442)
Writing g,(1) = % a,,, T (4-43)
. . r=0
the relation (4-41) gives
An,ran,r——Bn,r—lan,r—l

= n—l,r+lan—l,r+1+Dn—l,ran—]-r—En-l,r-Ian—lyr—l*—Fn~2,r+lan~2.r+l+Gn—2,ran—2,r’ (444‘)
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where 4,,, B,,, ..., G,,, are quadratic polynomials in #, r, and we are to take 4, , = 0 for
n<1 or r<<O.

If we start from the first p coefficients in the series for g,, the relations (4-44) determine
p—1 coeflicients for g,, p—2 for gs, etc., and finally one for g,. A check on the calculations
is provided by the identity (4-45) below. For the case f = 2-5 the coefficients as far as p = 15
are given in table 11 ; these are sufficient to give G(¢?, g e!?) correct to 4 decimal places when
0<<¢%2<0-4 and ¢ is real, and to three places when 0-4<<¢2<0-5. “

4-8. Properties of G(q?, qe'?). (i) It is significant to show that G is regular for the unreal values
of ¢ that came into question in § 2, q being real and less than 1. For this it is, by the theorem of
§ 4-4, sufficient that ¢ e'? be not real and on (1, +00).

Writing ¢ = ¢’ +i{ we have gei? = ge~*el?, so as regards the ‘horn’ part of figure 2,
where (>0, the result is immediate. On the inner generator of the ‘spindle’ we have from
(212) goib — e"tsinhA(k—{) 1— et~ gsinh (—{)

sinh (Ax —A{—{) sinh (Ak—A{—{)’

which is between 0 and 1, since {<0. On the outer generator, similarly, gei?>1, and
elsewhere ge'¢ is unreal. Hence the desired result is established provided the spindle is
cut along its outer generator, as we have supposed in § 2.

(ii) The value of G(g?% ¢%) may be obtained as follows: From the form of (4:19) the mean
value of the right-hand member of (4-20) with respect to § is 0. Since

%*1~—2(l~l—oc)qcos¢+(1+2a)q2_1~ ag ei? age™ié

g 1—2gcosp+q2 : 1—qgelv 1—gqgei®’

" 3 gg(g?) e geit dg
. 1—gei?

f"quaqew>de=»~af

= — 2770621 7*'g,(4%).

After similar integration of the other terms, and transposing, we get

Gl = $ ratet) = UL (445)

(iii) The limit of G(g?% ge'¢) at the point C of figure 2, where ¢~ 0, gei ~ 0, is im-
mediately evident, G ~ 0. To find its behaviour near ¥, where ¢ ~ 0, ge~ ¢ ~ 0 and gei¢ ~ 1,
let the path for the inner integral in (4:33) be displaced so that it encloses the point
t = g 'e 1. We must subtract the residue (g e!?)” (1 —gei¢)"* (1—ge~i%)2, which by (2-6)
equals (¢e'?~«)”, and hence

w L orRE, R\ —v) I(—va) F,(¢?) dv
Glasae) = 5 [ OY;T;k) N p——

-y
1 1+) p=(l+a) (t___l)voc(l_q2t)—vozdt

X {(qeiﬂ-—/c)v_I_ ___f

2m /), t—qlei¢

}. (4-46)

The contribution from the new inner integral is regular near ¢? = 0, gei® = 1, and its limit
is O(1). For the remaining term (interpreted as in (4-29 bis), let both paths of integration
be moved into the right half-plane, except for indentations around the branch points

1 All the tables are at the end of the paper, pp. 615 ¢f seq.
74-2
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v = +1ic; on doing this we must subtract residues at the zeros —v, of 4_,. Then let ¢—0
through positive real values, while # remains fixed. The integral becomes O{(log¢)~!},
and the residues become O(¢~7). Thus we find

_ /z,’,‘;I‘(l—{-Vk) Iy a)
C= T vyt vya)

and if > 2, so that #Zv, >0, the limit of G is 00 as ¢ 0.

19 0(1), (447

4-9. Solutions related to the principal solution. For any positive integer p, the hodograph

solution ©  T(natn)

1) h, ein@+io
= 2:n"’l’(ncc—l— 1) I'(n)

(e—in(0+ix) + ( - h: ) ann(qz) (4'4—8)

can be expressed, as in the preceding work, in the form
Q, = 3 'g8(q") 3 g () e, (49)
0 I

where the last term has the same domain of regularity as G(¢2, ¢ ¢#) in the theorem of § 4-4,
and (for n>0) g¥) is the residue at v = 0 of

I'1—v) (n—v—va) F,(¢%) Flva,n—v—va; n—v-+1; g)
v (1 —v—va) ['(1+n—v)

In particular,

gwwa=—@11ajf“‘ﬂﬁ i, @) =1 m=n, @0
P T |
(1+5) (2+p) (¥ 3 q
+ + to) L),
2 g eta ) )| .
) 1 2 4
g(gt) = =2 (145 + ot ) (1(1q—}—n)+2(2q—|—n)+m)

A convenient method of calculating the coefficients in (4-49) follows from the fact that

00y, i(1—2gcosg+q?) 00,
0 '

Q,=i D Y (4-52)

Suppose the coeflicients in Q, known. Then DQ,/(1—2gcos$-+¢?) can be expanded as a
Fourier series, and this must lack the absolute term since it is the ¢-derivative of the Fourier
series iQ,;; this gives the condition

(ﬁ) — Z q2n( (])) +g(p)) (4.53)

analogous to (4-45). The integration of (4:52) now determines £,,, —gi*V, and finally
g#+V is determined from (4-53), with p-1 in place of p. Thus the calculation of 2, Q),, ...
can be based upon the known €. The coeflicients for Q,, ), are given in tables 2 and 3,
for the case y = 1-4, f = 2-5.
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Starting from €, further solutions Q_;, Q_,, ... can be derived by differentiation accord-
ing to (4:52); Q_, has poles of order 2p-1 on the critical locus D = 0.

From (2-6) and (1-5), along with (4-52), it is verified that the values of X, Y, ¥ associated
with the solution Q, are
9Q,  2iaf),_,sing
P | — = -1
Yy =—ig7p, 4, dg 1—2gcos¢g-+g?’

(4-54)
e 20g€), sin ¢
¥, = (1—¢?)F{—ig a;+1*1_~2chs¢+q2+lgp‘l}'

Amongst the properties of the solutions O, are:

- (1) For p=>2, 0Q,/0¢ vanishes on the critical locus. This follows from (4:52) by transposing
the factor D, and then putting D = 0. For p = 1, DQ, has a finite limit, whence

Q)¢ — —i(1—¢?) ¥/ on D = 0.  (455)
(i) At the point ¢ = g,, ¢ = 0, for p>>3, 92Q,/d¢? vanishes, while for p = 2

20Q, 2(1—g2) ¥ |
a% = ézu% : (4:56)

This follows from (1-1), which for ¢ = 0 becomes

*Q, 1~qz/q?< B 8_%)
it~ -\ g )

5. A CASE OF TRANS-SONIC NOZZLE FLOW

In §3 it has been seen that a potential (g, ¢) which is even in ¢ specifies a trans-sonic
nozzle flow provided that for ¢ = 0 it is regular and its derivative Q, (which gives the
position co-ordinate x on the axis) is increasing over some range of ¢ which includes the
sonic point ¢,. From §4-9 it is seen that the real part of €, satisfies these conditions; the

~ crucial point is that by (4-56) its second derivative is positive at ¢ = 0, ¢ = ¢,. The associated
values of X, ¥,  are given by (4-54), with p = 2; and the position co-ordinates x, y follow
from (1-4), where 0(g, ¢) is given by (2:1) with = 0. From these formulae (taking the real
parts) the flow field has been calculated for a fluid (say air) for which y = 1-4, and a repre-
sentative set of streamlines is plotted in figure 6. Taking any symmetrical pair of the stream-
lines as rigid boundaries, we have here a nozzle in which the axial velocity increases rather
more slowly than x, and in which consequently the supersonic part is quite slowly divergent.

The interest of this example is that the approximation, to better than 1 in 1000, is uniform
over the whole field, so that we are enabled (i) to determine how far the regular flow-field
extends from the axis of the nozzle, and the manner in which the regularity finally dis-
appears, (ii) to check the accuracy of approximate nozzle theories.

Regarding (i): As each streamline is followed back from the throat into the subsonic
region, the speed ¢ on it diminishes to a minimum and then again increases to supersonic
values; and here, for ¢ a little greater than g¢,, the regular flow terminates in a limit-line.
On streamlines which are sufficiently remote from the axis the flow is entirely supersonic.
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Figure 6 shows also, as of mathematical interest, the analytic continuation of the nozzle
flow into new sheets of the flow-plane. At the point in the hodograph plane (approx.
q/q, = 1-43, 0 = 116°) corresponding to 4 the stream function is a local minimum, and near
A the flow-plane has four sheets which abut in pairs at four limit-lines; near 4 these are,
in pairs, almost coincident, and the figure does not separate them. ThlS type of singularity
has been noticed by Craggs (1948, p. 378).

Regarding (ii), the accuracy of approximate nozzle theories: The simple ‘hydraulic’
theory of Reynolds, and a modification of it proposed by Friedrichs, have been checked on
the streamlines ¥ = 0-1 and ¥ = 0-3 of figure 6, out to M = 2-24 (g/q, = 1-73). Both

theories give the formula
57 = Cql1 =",

where C is constant on a streamline ; with Reynolds, S is the transverse co-ordinate y to the
streamline from the axial point where the speed is ¢; with Friedrichs, § is the length of
a circular arc, orthogonal to the streamline and to the axis, through the streamline-point
where the speed is ¢ (the underlying assumption is that such arcs should be approximately
the loci of constant speed). In the supersonic part of the nozzle, out to ¢ = 0-3, the Reynolds
theory is correct to about 0:2 %, ; it gives y a little too large for M round about 1-3, and a
little too small for M round about 1-8. The Friedrichs theory has its largest discrepancy,
about 0-4 9, round M = 1-3, and for M round 1-8 is rather better than Reynolds’. In the
subsonic part, we clearly cannot expect such good agreement. In the Reynolds theory, the
percentage errors in y, in excess, are about as follows

M= 0-745 0-565 0-456
=01 0-3 08 25
=03 37 76 13

For the Friedrichs theory the errors are considerably larger, as we might expect since the
constant-speed loci are grossly discrepant from orthogonality to the streamlines.

- From this case of nozzle flow, an indefinite number of others can be found by superposing
other hodograph solutions, and for this purpose the values of , X, ¥, for the solution %4,
of figure 6, are given in table 4, for ¢> = 0(0-02)0-50 and ¢ at degree intervals over a sufficient
range.t The associated values of # are readily found from (2-1), and a short table only
(table 5) is given to show its general march.

6. A FAMILY OF ‘AEROFOIL-TYPE’ FLOWS

Consider an infinite stream, in steady two-dimensional irrotational isentropic flow past
a fixed cylinder; we call this a flow of ‘aerofoil-type’. Let the velocity ¢., at infinity be sub-
sonic and parallel to Ox, and let the flow be symmetrical about Ox. It is well known that
the Legendre potential Q(g, §) of such a flow is even in 4, and has at ¢ = ¢.,, = 0 a branch
point where its first derivatives are infinite like the real part of (1—ge"’/g,,)™% In§2it has
been shown that, in general, single-valued solutions (g, ¢) of (2-4) are converted by the

+ The relevant range of ¢ decreases as ¢ increases. The author has a MS. table for the complete range
0 < ¢ < 180°, at degree intervals, and could supply photo copies of it. It was computed by the Mathematics
Division of the Commonwealth Scientific and Industrial Research Organization, Australia, using punched-
card methods.
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q/qs on axis
1-732
1:588
1428
1:249
1-039
1000

0-693

Cr 0

(i) ~o

Fieure 6. Trans-sonic nozzle flow, solution #Q,. (i) shows representative streamlines (arrowed)
and isovels in the principal flow-sheet, and also continuations, across the limit-line 4B into a
second flow-sheet, of one streamline and of the supersonic isovels. (The left-hand part of the
isovel ¢/q,=1-039 is indistinguishable, except in the corner near 4, from the limit-lines 4B, AC.)
The repetition in the left lower corner indicates how the higher isovels enter the third and
fourth flow-sheets near 4. The upper curve shows the axial speed. (ii) shows, enlarged, the
streamlines near 4. In the four-sheeted flow-plane they are closed curves.
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transformation (2-1) into functions of ¢, # with simple branch points; and by (2-5) the branch
point will be at ¢ = 0 and ¢ = ¢,, <g, provided « is real, with

lk| = arctanhA/(l_q"’/q) : arctanh_J(&qz—i). (6:1)

1—gq5

The additional condition as to the infinity of the derivatives of €2 is met by choosing the
function Q, given by (4-49) and (4-50) with p = 1; and to get a real symmetrical solution
we take minus the real part. Thus we may expect to get a family of aerofoil-type flows from
the potential:
1 (" (1—7)7F—1 . @ .
— — —-ig) _ ng(1) (42 eing .

Q=g [L 0T e lg (1—ge ) S e ], (69)
where ¢ is related to § by (2-1), with a real non-zero value of the parameter «, related by
(6-1) to the free-stream velocity ¢, ; as | & | runs from 0 to o, ¢,, runs from ¢, to 0. To find
the corresponding position co-ordinates and stream function we put p = 11in (4-54) ; writing

Q = %q”g?(qz) ein?, (6:3)
and taking account of (4-20), (4:50) and (4-51) this gives
X= @[(1 2ol iig;;ozﬂﬁ?) 1 f;j—w 1 _zl;ﬁ;b;:;lf gz“a;?] (6-4)
¥— —f[%%%+%], (6:5)
¥= f[log(l qe™) +(1"i;—eq%iq—5 (oclog (l—q"’)—'%ﬁz QLZL)TE d’f)
U (lonllg 205 miing o (o
with D =1—2(1+a)gcosg+(1+2a) g2 ?6'7)

And, to complete the statement of formulae, we are to put ¢ = ¢’ +i{; then {, § are connected
with ¢, ¢’ by (2:10) and (2-11), and finally (1-4) give x, y.

6:1. The flow-field. In the first place it is seen that the point at infinity in the xy- or flow-
plane given by (6-4) and (6-5) corresponds to the hodograph point where D = 0, and so,
by § 2, the relevant values of ¢ have their imaginary parts the same sign as «. If this sign is
positive the series (6+3) are rapidly convergent, and are of subsidiary effect in (6-4) to (6-6) ;
but the contrary case is more complicated. Confining attention then to the simpler case,
we shall show that:

When & is positive and not too small (i.e. when q., is not too large), a bounded part, surrounding A, of
the hodograph surface of figure 2 is in one-one correspondence with the part of the flow-plane outside a
closed streamline = 0. For all admissible values of « this streamline is an aerofoil shape with cusped
trailing edge and (at least for y near 1-4) a blunt leading-edge.

The proof is, in outline, as follows:

(i) Since D has a simple zero at the hodograph point 4, a neighbourhood of this point
has a one-one map on the far part of the flow-plane.
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(ii) On the inner generator BAC of the hodograph surface ¢ is pure-imaginary, so
and D are real. Thence Y = § = 0 = 0, so this generator maps on to the axis y = 0 of the
flow-plane, with x = X(q). As (¢, ¢) moves up the generator through 4, x decreases to —o0
and then starts decreasing from +o0; and ¢(x) <¢, = ¢,,. Now as (¢, ¢) moves from 4 to C,
x(q) remains regular and either (¢) dx/dq remains always positive, so that AC has a one-one
map on a ray x,<<x< 00 terminating in a stagnation point x.; or (5) dx/d¢q becomes zero
at some point U between 4 and C, and the mapping becomes singular at U. In this case
(see Appendix I) the locus ¥ = 0 on the hodograph surface consists of the generator AC
together with a curve intersecting it perpendicularly at U, and a neighbourhood of AU
terminated by this curve maps uniquely on to a part of the xy-plane bounded by two arcs
which meet tangentially so as to form a cusp. (Itis because ¢>¢, on AU that the map is
unique.)

Of these two possibilities, the second actually occurs. For near C, where ¢ ~ 0 and by
(2:12) gei¢ ~ 1, (6-2) gives the principal part Q(q,¢) ~ % log (1—ge~i9), so from (2-17),
Q(q,0) ~a~'(log g+«) and x = 0€)(q, 0)/dq ~ (xg)~1, which is large positive; thus x is large
positive at both ends of AC, and there must be an intermediate turning point.

- As regards the mapping of the hodograph arc 4B, there are the same two possibilities.
On this arc we have from (4-48) |

dx _ 0%Q(q,0) _ I'(no+mn)

- 5 7K hn e~ d? n 2
3 g =3 Mty M) (& ) ag P

From (4-5) and (4-17) it may be shown that %,/hf = § and that &4/h¥, ... are between 3
and 1, while d?(¢"F,)/dg*>0 for 0<<g¢<g,. Hence if e*>$ we get case (a), and if e**< 3
case (b). However,when y is in the neighbourhood of 1-4 the case e* <  is on other grounds
(see the footnote to (iv) below) inadmissible, so we are left with case (a): the hodograph
arc maps uniquely on to a ray y = 0, —o0 <x<xy, and at x, there is a regular stagnation
point which is the leading edge of a blunt-nosed aerofoil ¢ = 0.

(iii) In the limiting case of slow motion, g, ~ 0 or k ~ o0, the formulae reduce to closed
forms and a complete analytical discussion is relatively easy. On the hodograph surface,
F$>k/(14«), so for k ~00, 7 $is large, and the limiting formulae are obtained by putting

ge ¥ =1y
and taking ¢ ~ 0 with 7 remaining non-zero. This gives
for (2:7): gesi — 5(1—7)9,
for (6-4), (6-5): g(X+iY) = —p{1— (1 +a) p} 1,
for (1-4): z=x4+iy = ag(X+iY) g leld = — acer ’
ey vl (7 —(1+a) 7}
.6): : _ o '
for (6-6): ¥ = S{log (1 ”)+1—(1+0¢)7]’

and by taking a = e™* we get a finite limiting form for z. In the #-plane, the curve y = 0
consists of the real axis together with an oval intersecting it at 7 = 0, (1+2a) (14«)~2; and
the interior of this oval maps uniquely on to the part of the z-plane outside the profile
shown (for y = 1-4, « = 0-724745) in figure 7.

VoL. 245. A. . 75
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608 T. M. CHERRY ON

(iv) An argument from continuity now shows that when g¢,, is sufficiently small the cir-
cumstances are qualitatively the same as for ¢,, ~ 0: on the hodograph surface the streamline
¥ = 0 consists of the generator BAC together with an oval cutting it at Band U (see figure 2),
and the interior of this oval maps uniquely on to the flow-plane. From analogy with other
hodograph investigations we must expect that, as ¢, increases, the uniqueness of the
mapping will break down through the appearance of limit-lines intersecting the streamline
¥ = 0, and this is indeed the case. The greatest admissible value of ¢, can be found only by

y
yd \\\
~
\
0 \ . : >::
| /| I e = A
\
e
0

Figure 7. The limiting case g, ~0: half of the aerofoil profile, and the speed ¢ on it.

y iR
L5
- 0T
0 I - T
M=l—-:—\—/7£:—:“"’“—‘—“—"\‘*1l" j
%W?‘\\P/pw = R
0

Ficure 8. The streamline ¢ =0, with speed and pressure on it, for y=1-4 and M, =0-660.

arithmetical trial. In the case y = 1-4 the streamline ¢ = 0 has been computed for x = 0-2
(corresponding to ¢, = 0-283, or Mach number M, = 0-660) and is shown in figure 8;
it has two cusps P, @ on each flank], and there is a small adjacent part PQR of the exterior
region where the mapping from the hodograph surface is 3 : 1 instead of 1 : 1. For a small
decrease in ¢, the 3:1 region becomes retracted within the curve ¥ = 0; and, pending
further calculations, the graphs in figure 8, with the kinks rounded off as indicated by dotted
lines, may be taken as fair approximations to the case where M, is about 0-6. On the flank
of the aerofoil thereis a limited region of supersonic flow, with the maximum speed occurring
aft of the point where y is greatest; this feature is consonant with the commonsense suggestion
that, by the decrease in y, the streamlines are here being ‘encouraged’ to spread out, which
for locally supersonic flow implies increase in speed.

+ This is greater than the critical value « = § log § = 0-1014 noted in (ii) above.
T These cusps are masked in figure 8 by the thickness of the line.
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 609

6-2. The limiting case 4., ~ q,, K ~ 0. Here, on account of the cusps on its flanks, the curve
¥ = 0isno longer an aerofoil, and the flow so loses its chief physical interest. It is, however,
of considerable mathematical interest since, as we shall show, by choosing in (1-4) a = «*
we obtain in the limit q, = q,, k = 0 a field consisting of a number of distinct Prandtl-Meyer flows,
such as normally are ‘missed’ by a hodograph investigation. In calling these flows ‘distinct’ we
speak in the analytical sense; but where the xy-regions containing two of them abut, they
join with continuity in ¢, # but discontinuity in the higher derivatives. Together they form
the type of solution commonly assumed for supersonic problems, and thls is here obtained
as the limit of a solution which is everywhere analytic.

The mechanism of this degeneracy is, in general and rather vague terms, as follows. For
a Prandtl-Meyer flow, @ is functionally related to ¢; in fact the hodograph point (g, 6) is
confined to a single characteristic. Now the critical locus D = 0 corresponds to a pair of
characteristics, and the hodograph surface of figure 2 has, for x ~ 0, a narrow band which is
practically a cylinder standing on this critical locus. As x— 0 the breadth of this band tends
to zero, and if, for some hodograph solution, its map on the flow-plane remains two-dimen-
sional in the limit, a pair of Prandtl-Meyer flows will be obtained. The solution specified
by (6-4) and (6-5) has the desired property because of the presence of D in the denominators
of the leading terms; in the limit, D — 0, but we preserve finite limits for x,y by taking the
scale constant ain (1-4) equal to k. Moreover, in a neighbourhood of the point 4 of figure 2,
whose dimensions are small with «, the real and unreal parts of D are independently small,
and on this account its map remains two dimensional as k— 0. In the limit, therefore, we
get a proper region of the flow plane corresponding to a single hodograph point, that is,
a uniform stream; this is in addition to the two Prandtl-Meyer flows previously mentioned.

The details of the matter are as follows: The case to be considered is x ~ 0, in (1-4) we
take 4 = «*, and we exclude ¢ from a neighbourhood of 1. Then the formulae (1-4), (6-4),
(6-5) for our solution are equivalent to

x=X'cosf—Y'sinf, y= X'sinf+Y cosb, (6-8)
2ia(1—¢?) ¥ sin ¢ s
%[ (1+a)( 1—2qcos¢+q2)K**D+0(K >:|’ (6:9)
S I Gl il i
Y — .ﬁl (o acip 0 K)] (610)

Writing ¢ = ¢’ +i{, we confine attention to the strip of the hodograph surface, i.e. the horn
in figure 2, for which
{=0(x%), «/{= 0%, (6-11)

where § is a constant greater than } and not exceeding . Then we have approximations

such as
sinh 24({—«) = 20{{1 —«/{+ 32202+ O (x*¥)},

and the equation (2-10) of the hodograph surface becomes

Kk (2

2(14a)gcosg’ = 1+ (1+2a) g2— 1= & + {(2zx+1) (8a+2) g2 — (a+2)}+ O(k®)

(1+a) ¢ +oc)§
= 1+ (1+2a) g2+ O (x%). (6-12)
75-2
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610 T. M. CHERRY ON
Thence (6:7) gives
k7D = k¥1 —2(1+4«a) gcos ¢’ cosh {+ (14 2x) ¢>+2i(1 +a) ¢sin ¢’ sinh {}

= ((11 +§)>§"*+ :%{1 a— (1+4-20) (1+3a) g2+ O(k*-1)
| +2i(1+4a) gl sing’{1+ O (%)}, (6-13)
and (2-11) gives 0= ¢’——2ocarctan g3 ré¢ ¢,—|~0(K26). (6-14)

(i) First, put § = «7#(, and let k-0 with £ fixed at any positive value; this is consistent
with (6-11) provided d< %. Also let ¢’ be fixed at any value whose sine is not zero. Then
{—0, sing—>sing’, and by (6:12), (1+a) (1 —2gcos¢d+¢%) —a(1—¢?); while since 0>,
(6-13) gives

2
D217 Lo ) gising

(I+a)€
Hence the solution (6-9), (6-10) takes the limiting form
o 4(lta)g(1—g)Hsing
(1~ )26 1 4(1 +a)* PEsin? (615
y - 2(+a)? (1—g*)!"¥sing’

(= @A) e sint”
while in (6:12) and (6:14) the O(x%) terms disappear so that ¢, § become functions of ¢
only; and thence x, y follow from (6-8).

Since 6 is a function of ¢ only, while %,y depend also on the parameter £, these formulae
represent a pair of Prandtl-Meyer flows, one for ¢’ >0 and the other for ¢’ <0. It is easily
calculated that, for the flow with ¢'> 0, the streamlines lie as in the part of figure 9 to the
right of the radii Oy, 0Q. HK is a limit line, which is present because the denominator in
(6-15) takes a minimum value for

£ = 3{(1— %) acosec'[2(1 +0)? g} = Ey(0); (6:16)
and (6-15) give each point (#,y) doubly, once for { <£; and once for £>§,. Since, however,
the denominator is analytically equivalent to a single parameter, this limit-line is a remov-
able singularity, and the Prandtl-Meyer flow could continue regularly across it.

(i) Secondly, let us confine attention to a neighbourhood of the hodograph point 4,

by putting { = Cixd(1—khr), ¢ = «ls, (6-17)
where C = 6a?(1+a)t (1+20)71, (6-18)

and 7,s are parameters to be held fixed as x— 0. This is consistent with (6-11), where we
can take § = %; (6-12) gives

g = (14+20)71 - O(f) = ¢,+O(x?), (6-19)
and (6-13) becomes

kiD= 2<1

0 [C3ir{1 4 0(e)}-HCHIS(1 + Ok},

where the real term would have been of order «* but for the special choice (6-18) of C. Also
sing = icos @’ sinh {{1+ O(¢'/0)} = iCH1+ O(x*)},
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 611
and for k— 0 the solution (6-9) and (6-10) takes the limiting form

' _ ___(1"49##'3 ' 2(1—g3)'¥s 6-20
S (AT (RN (620

The associated limits of ¢, § are g,, 0, so since 7, s are unrestricted these formulae represent
two uniform streams, parallel to Ox and of speed ¢,, one for >0 covering the half-plane
x<0, and the other for <0 covering the half-plane x> 0. Figure 9 shows only the upper
half of the first one.

Ficure 9. The limit-case of Prandtl-Meyer flows.

The formulae (6-15) are of course analytically distinct from (6-20). This is due to non-
uniformity in the limiting processes, in the former case for ¢’ near 0 and in the latter for
7 near oo.

(iii) Implicit in the preceding are conclusions concerning the case where « is positive
and small; but it is to be noted that the non-axial part of the streamline 3 = 0, which was
the primary object of investigation in § 6-1, escapes that of § 6-2 since it does not lie in the
strip (6:11) of the hodograph surface.t As « decreases the limit-lines RP, RQ of figure 8
grow upwards, and it may be proved that, for k ~ 0, their common point R is at x = A«?,
y = Bx~*, where (for y = 1-4) A = 0-33, B = 0-36 approximately. In the limit k = 0 they
become Oy, HK in figure 9. For k=0 the remote part of the flow proceeds, above R, regularly
from x = —00 to x = 4-c0. The nearer part falls approximately into four sections, of which

T This strip does not completely girdle the hodograph surface since a neighbourhood of the outer generator

where ¢’~0 and g~1 is to be excluded. The streamline ¢ = 0, by twice traversing this neighbourhood,
encloses the strip.
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612 T. M. CHERRY ON

the first and the fourth are specified approximately by (6:20) with r$ 0, and the second
and third by (6-15) with £5 ;. The junction between first and second is regular, but the
junctions of the third with the second and fourth are across the limit-lines HK, Oy.

6-3. Other flow-cases. (i) The potential Q = %2€,(q, ), taken with k=0 in (2-1), gives
a nozzle flow in which the axial speed is everywhere subsonic, with its maximum at the
throat.

(ii) The potential Q= 2(Q,+CCQ,) gives a stream-flow past an aerofoil with cusped
trailing edge, whose thickness-ratio can be adjusted by choice of the constant C.

APPENDIX 1. CUSPED STREAMLINES IN A SUBSONIC REGIONT

We shall confine attention to fields of flow having an axis of symmetry, such as are
specified by a potential Q(g, ) which is even in 6. The case to be investigated is that in which
02Q)/d¢? vanishes at a point ¢ = ¢, ¢ = 0, where 0<¢,<g,. Near this point let

Q = a(g—qo) +300°+40(9—90)° +3(9— 90) 0>+ 2'5¢(9— 90)* + 2S¢~ 90)* 0* +2g80" + ...
Substituting this series into the hodograph equation (1-1) we find the following relations
between the coeflicients:

(g-+dqo) (1—4i/43) +fas(1—45) = O,
and by these we can eliminate b, d, g from all subsequent formulae.
From (1-3), (1-4) and (1-5) there follow the developments for the position co-ordinates

and stream function:
o 1 c%(l —q) '92+

x—a = 3¢(4—q,) 1—¢3/q? “ees
e ol e e
R O L e e At DR

Confining attention to the case ¢==0, it follows that each of the loci y = 0, ¥ = 0 in the
hodograph plane consists of the axis ¢ = 0 together with a curve, approximately parabolic,
intersecting it perpendicularly where ¢ = ¢, (figure 10); and since g,>> 0 the y-locus is to the
left of the yr-locus. Also, since 0<Cgy<g,, the locus x—a = 0 consists of two curves interlaced
with the two branches of the locus y = 0. Hence it follows that as (g, ) circles once round
(90> 0), the point (x,y) circles twice round (a,0). The parabolic part of the locus ¢ = 0
divides the hodograph plane into two parts; the one on the right is in one-one correspond-
ence with a part of the xy-plane bounded by two curves forming a cusp, given parametrically
by

ooy

cqg(1 9(2))) 62 ..., o ¢q3(1—q3) 63+

ST gy 3(1—q3/q?)

while for the one on the left the corresponding xy-region is a Riemann surface with an over-
lap across the cusp (figure 10).

+ The singularity here treated has been noticed briefly by Craggs (1948). The point in what follows is to
find a criterion to distinguish between the cases (ii) and (iii) of figure 10; Craggs does not deal with this.
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 613

The first of these cases gives a possible physical flow; the second, on account of the
overlap, does not. Itis seen that the half of the hodograph plane which gives the physically
acceptable flow is the one that contains the half-axis § = 0, ¢> ¢,. Hence the conclusion:

For the flow defined by a potential Q(q, 0) which is even in 0 let 0%Q)dq? vanish at a point ¢ = q,,
0 = 0, where 0<<qy<q,, with Q)d¢*==0. Then the streamline = 0 divides the hodograph plane
near (qo, 0) into four compartments, and the pair of these which abut along the ray 0 = 0, ¢>q, is in
one-one correspondence with a part of the xy-plane bounded by two arcs which together form a cusp, as
in figure 10.

The distinction between the cases f/¢>0, fJ¢ <0 is that in the former, g<g, on the arcs
forming the cusp, whereas in the latter ¢> ¢,; in both cases ¢>> g, on the straight streamline
which prolongs the cusp.

| @ (i)
FIGURE 10. (i) hodograph plane; (ii) and (iii) flow plane.
(Full line: ¢»=0. Chain dot: y=0.)

APPENDIX 2. ANALOGIES FOR THE HODOGRAPH THEORY

"The key facts of this paper are (i) that the transformation (2-1) has a branch locus which
is characteristic for the hodograph equation, and (ii) that the function (), defined in (4-19)
has an analytic continuation which is single valued for 0<<g<1 and all real ¢. Neither of
these properties is a priori at all evident, so it will be of interest to indicate briefly the con-
siderations leading to the choice of the formulae (2-1) and (4-19) as starting-points.

The leading idea is that the attack on the hodograph equation should be guided by the
prior study of simpler but analogous equations. One such equation is obtained from the
hodograph equation (1 1) by putting

Qg = t (A1)
and letting « become infinite, with ¢ held fixed. This gives
12+t Q-+ Qg — 2 (tQ,+ Q) = 0. (A2)

If we omit the term #3(}, (which does not alter the characteristics), the resulting equation is
satisfied by a general Kapteyn series Q = X4, e J,(vf) ; and the well-known formula (valid
for 0<<2<1)

i eint J,(nt) = (l—tcoé $)L, | (A3)
where N 0 = ¢—tsing, : , (A4)

suggests that we study the transformation (A 4) in relation to the equation (A2). It is
immediately found that its branch locus is characteristic for the equation.
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614 T. M. CHERRY ON

The suggestion therefore is to find a generalization of (A 4), and it does not require
much experimenting to hit on the replacement of ¢sin ¢ by an expression having this as its
limit, viz.

ialog (l —l%:-b) —ialog (1 ~t;0:¢) .
Putting ¢ = 2aq as in (A 1) we are led to (2-1).

Next, from (2:16) it is seen that the hypergeometric function F(va+v, —va;v+1; ¢?%)
plays the same part in relation to our transformation (2-1) as J,(vt) does in relation to Kep-
ler’s equation (A 4). On account of (4-6), this function is ‘close’ to the F(a,, b,; v+1;¢?)
which belongs to the hodograph equation, and it is analytically simpler because it lacks the
branch points which affect a,,5, as functions of v. The differential equation having the

v Yy
elementary solutions ex"? ¢F(va+v, —va; v+1; ¢%) is found to be

7*(1—¢%) Qg+, + (1—g%/43) Qg = 0. (A5)
On account of (2-16) this has the solution = ¢, and by differentiation with respect to ¢/
we obtain another closed solution
Q— ‘2?__ | a(1—q?)
T 00 1+a (1+a)D
_ i’: D(na+n)
A T(na) T(n+1)
where D = 1—2(1+a) gcos@+ (1+2«) ¢>; when n is a negative integer, the coefficient of
el is to be interpreted as a limit, as in (4-11).
The series (4:19) defining Q, is now suggested as an analogue of the one just written;
from the expression

q"F(no+n, —na; n+1; g%) einf, ' (A6)

ngg% ¢F(a,b,5v+1; ¢°)
we obtain the coefficient of e~i" by putting v = #, and the coefficient of i by taking the
limit as v——n. One’s initial hope that this series might be an elementary function of ¢, ¢
is not fulfilled ; but the formula (4-20) found for (2, seems to be, for the hodograph equation,
the nearest attainable analogue to (A 6) or (A 3), and on this account I have called £, the
principal solution. The branch points of 4,, b, seem to be essential obstacles to the attain-
ment of anything simpler.
It may be remarked that by putting in (A 4)

t=1+uT, ¢=(20)'®, 0=2%'0

and letting #— 0 we obtain
O=1D3-TQ, (A7)

while (A 2) becomes the Tricomi equation Qg = T Q4 ; its transform by (A7) is
(D2~ T') Qpyp+20Q74 +Log = 0,

and solutions of this such as ) = ® become branched functions of 7, 0.
Finally, it may be remarked that (A5) can be interpreted as the exact hodograph
equation of an ‘ideal’ gas for which the pressure-density relation does not follow the poly-
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 615

tropic law, but is fairly close to it when the density is not too small (cf. von Mises & Schiffer
(1948) and Tomotika & Tamada (1951) in relation to Tricomi’s equation and Bessel’s
equation). In this paper, however, I have chosen to deal with the true hodograph equation
of a polytropic gas.
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TaBLE 1. THE FuNCTION (g, §) FOR y=1-4, f=2-5
_ (=g 1

T (I4a){1-2(1+a) gcos g+ (1+2x) ¢ 14+«
where a2 =0-72474487. Writing g,.(¢%) =a,0+a,,¢*+a,,¢*+ ..., the table gives the value of a,,.

Q

+ Elq”g,.(qz) ei"?,
-

r=0 r=1 r=2 r=3 - r=4 r=>5
n=1 1-0 0-625 0-567308 0-557408 0-562944 0-574943
2 0-5 0-396725 0-350296 0-328427 0-317504 0-312303
3 0-254717 0-243631 0-214483 0-194462 0-180587 0-170617
4 0-143588 0-166272 0-149989 0-134785 0-122532 0-112705
5 0-087542 0-123248 0-115528 0-104691 0-094778 0-086227
6 0-056176 0-096589 0-094529 0-087131 0-079361 0-07220
7 0-037123 0-078619 0-080353 0-075591 0-06961 0-06371
8 0-024800 '0-065722 0-070044 0-06730 0-06279 0-05796
9 0-016433 0-056024 0-06213 0-06095 0-05764 0-05373
10 0-010532 0-04847 0-05582 0-05585 0-05352 0-05038
11 0-00624 0-04241 0-05063 0-05162 "0-05010 0-04762
12 0-00305 0-03745 0-04626 0-04802 0-04717
13 0-00062 0-03332 0-04253 0-04489
14 —0-00125 0-02982 0-03929
15 —0:00272 0-02682
16 —0-00388
r=6 r="7 r=8 r=9 r=10 r=11
n=1 0-589989 0-606534 0-623797 0-641357 0-65897 0-67651
2 0-310423 0-310613 0-312158 0-31462 0-31773 0-32129
3 0-163233 0-157638 0-15333 0-14997 0-14734 0-14527
4 0-104703 0-09807 0-09250 0-08774 0-08363 0-08004
5 0-07890 0-07258 0-06707 0-06224 0-05795 0-05411
6 0-06580 0-06012 0-05506 0-05053 0-04644
7 0-05822 0-05321 0-04866 0-04453
8 0-05329 0-04891 0-04486
9 0-04976 0-04594
10 0-04704
r=12 r=13 r=14 r=15
n=1 0-69387 0-71102 0-72793 0-74459
2 0-32517 0-32930 0-33359
3 0-14365 0-14239
4 0-07688

Vor. 245. A. 76
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TaBLe 2. THE FUNCTION £(¢, §) FOR y=1-4, f=2'5

(g, ) = ~log (L—g &™) + 3, g"(¢?) %,
2

Writing g®(¢%) = b, + b, ¢+ b,24* + ..., the table gives the value of b,,.

r=0 r=1 r=2 r=3 r=4 r=>5
n=0 0-0 —0-724745 —0-634152 —0-634152 —0-653969 —0-680128
1 —2:0 —0-987372 —0-910517 —0-906181 —0-924010 —0-950572
2 —0-387628 —0:241950 —0-236923 —0-234168 —0-234163 —0-235914
3 —0-055866 —0-041274 —0-060280 —0-065667 —0:067552 —0-068288
4 +0-032034 +0-022372 —0-003704 —0:013623 —0-018176 —0:020455
5 0-057649 0:046057 +0-019044 +0-007222 +0-001089 —0-002395
6 0-063843 0-055410 0-029665 0-017310 0-010402 +0-00619
7 0-063260 0-058786 0-:035038 0-022825 0-:01562 0-01102
8 0-:060256 0-059414 0-037813 0-02607 0-01884 0-01406
9 0-0564.88 0-058707 0-03918 0-02804 0-02095 0-01613
10 0-052620 0-05734 0-03972 0-02925 0-02239 0-01761
i1 0-04892 0-05566 0-03978 0-02997 0-02338 0-01869
12 0-04549 0-05385 0-03952 0-03037 0-:02407
13 0-04234 0-05201 0-03907 0-:03054
14 0-03949 0-05019 0-03850
15 0-03689 0:04843
16 0-03453
r=6 r="7 r=8 r=9 r=10 r=11
n=0 —0:708466 —0-737383 —0-766187 —0:794565 —0-822375 —0-84956
1 —0-980921 —1:012893 —1:045437 —1-078007 —1-11031 —1-14219
2 —0-238755 —0-242282 —0-246247 —0-25050 —0-25492 —0-25946
3 —0-068613 —0-068798 —0-06895 —0-06912 —0-06932 —0:06955
4 —0-021627 —0-02221 —0:02246 —0:02252 —0-02247 —0-02234
5 —0:00448 —0-00575 —0-00653 —0-00699 —0-00724 —0-00735
6 +0-00348 +0-00169 +0-00046 —0-00037 —0-00094
7 0-00793 0-00577 0-00423 +0-00311
8 0-01075 0-00836 0-00660
9 0-01270 0-01017
10 0-01413
r=12 r=13 r=14 r=15 r=16
n=0 —0-87611 —0-90203 —0-92734 —0-95207 —0-97624
1 —1-17356 —1-20439 —1-23465 —1:26435
2 —0-26407 —0-26871 —0-27335
3 —0-06982 —0-07012
4 —0-02217
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TaBrLe 3. THE FUNCTION £),(g, ¢) FOR y=1-4, [=2-5

Q(g, 9)= X q'"'g?(q?) eind.
n=—o

Writing g?(¢%) = ¢g+ ¢, ¢ +¢,0¢*+ ..., the table gives —c¢, forn =2,3,4,...and ¢, forn=1,0,—1, —2, ....

r=0 r=1 r=2 r=3 r=4 r=>5
n=2 0-530931 0-157321 0:263446 0-313146 0-349455 0-380001
3 0-558185 0-208988 0-270184 0-300616 0-324890 0-346582
4 0-450736 0-175490 0-222290 0-244660 0-262482 0-278545
5 0-361069 0-140988 0-181648 0-200278 0-214687 0-227524
6 0-294959 0-113556 0-150798 0-167438 0-179878 0-19075
7 0-246129 0-092390 0-127277 0-142700 0-15390 0-16348
8 0-209257 0-075936 0-108954 0-12354 0-13388 0-14257
9 0-180735 0-062947 0-:09436 0-10830 0-11802 0-12605
10 0-158181 0-05253 0-08251 0-09591 0-10515 0-11268
11 0-14000 0-04405 0-07272 0-08566 0-:09450 0-10163
12 0-12509 0-03706 0-06452 0-07704 0-08554
13 0-11269 0-03122 0-05757 0-06969
14 0-10224 0-02630 0-05161
15 0-09335 0-02212
16 0-08569
r=6 r="17 r=8 r=9 r=10 r=11
n=2 0-407242 0-432256 0-455614 0-47766 0-49863 0-51868
3 0-366702 0-385668 0-40371 0:42096 0-43754 0-45352
4 0:293572 0-30784 0-32148 0-33459 0-34723 0-35945
5 0-23949 0-25084 0-:26170 0-27214 0-28221 0-29196
6 0-20078 0-:21025 0-:21929 0-22797 0-23633
7 0-17222 0-18041 0-18819 0-19564
8 0-15039 0-15766 0-16453
9 0:13320 0-13978
10 0-11930
r=12 r=13 r=14
n=2 0-53794 0-55650 0-57444
3 0-46897 0-48392
4 0-37128
r=0 r=1 r=2 r=3 r=4 r=5
n=1 2:0 0-905931 0-597451 0-509759 0-475831 0-462267
0 0-0 2:174235 1-358897 1-240622 1-236690 1-266731
-1 1-0 1-612373 1-214541 1-154145 1-164167 1-197205
- 2 —0-112372 0-866582 0-637468 10-595191 0-594163 0-607230
- 3 —0-251261 0-597853 0-437058 0-404847 0:401860 0-409134
— 4 —0:269675 0-457449 0-333833 0-307949 - 0:304631 0-309367
— 5 —0-261977 0-370791 0-270518 0:248948 0-245718 0-249104
— 6 —0-248028 0-311868 0-227588 0-209134 0-206107 0-20869
-7 —0-233253 0:269165 0-196514 0-180408 0-17760 0-17966
— 8 —0-219270 0-236777 0-172956 0-15868 0-15609 0-15778
-9 —0-206516 0-211363 0-15447 0-14166 0-13926 0-14069
—10 —0-195028 0-19089 0-13957 0-12796 0-12573 0-12697
—11 —0-18471 0-17403 0-12731 0-11669 0-11462 0-11570
—12 —0-17544 0-15992 0-11703 0-10725 0-10532
—13 —0-16709 0-14792 0-10829 0-09923
—14 —0-15953 0-13760 0-10077
—15 —0-15266 0-12863
—16 —0-14640
r=6 r="1 r=8 r=9 r=10 Cor=11
n=1 0-:458253 0-459322 0-463323 0-469109 0-47602 0-48366
0 1-309446 1-357246 1-406940 1-457041 1-506818 1-55591
-1 1-239180 1-284740 1-331544 1-378474 1-42497 1-47077
- 2 0:626061 0647403 0-669798 0-69253 0-71523 0-73771
- 3 0-420729 0-434286 0-44873 0-46352 0-47837 0-49313
— 4 0-317560 0-32736 0:33792 0-34880 0-35977 0-37071
— b 0-25537 0-:26299 - 0-27126 0-27984 0-28851 0-29717
— 6 0-21372 0-21993 0-22672 0-23377 0-24093
- 7 0-18385 0-18908 0-19482 0-20081
- 8 0-16137 0-16588 0-17085
-9 0-14382 0-14778
—10 0-12974
r=12 r=13 r=14 r=15 r=16
n=1 0-49176 0-50016 0-50875 0-51745
0 1-60412 1-65138 1-69767 174299 1-78735
-1 1-51571 1-55975 1-60288 1-64510
- 2 0-75985 0-78160 0-80295
-3 0-50771 0-52207
— 4 0-38154

76-2
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TABLE 4. STREAM FUNCTION AND POSITION CO-ORDINATES FOR SOLUTION Z(),
The functions tabulated are 10%y, 103X, —10%Y, whence x, y follow from (1-4)

A A

paae \

OF

10% (4% @)
yz 0-02 0-04 0-06 0-08 0-10 0-12 0-14 0-16
#°
0 0 0 0 0 0 0 0 0
1 14 31 51 72 96 122 151 181
2 28 62 101 144 192 244 301 362
3 42 93 151 216 288 366 450 541
4 55 123 201 288 383 487 599 720
5 69 154 251 359 477 606 746 897
6 83 184 300 429 571 725 892 1071
7 96 214 349 499 663 842 1035 1243
S 8 110 244 397 567 754 957 1177 1413
— 9 123 273 444 635 844 1071 1316 1579
23 10 136 302 491 701 932 1182 1452 1742
e 11 149 330 537 767 1018 1291 1585 1900
@) 12 161 358 582 831 1102 1397 1714 2055
@) 13 174 386 626 893 1185 1501 1841 2205
W 14 186 412 669 954 1265 1601 1963 2350
15 198 438 711 1013 1343 1699 2081 2490
16 209 464 752 1071 1418 1793 2195 2625
17 221 489 792 1127 1491 1884 2305 2754
. 18 232 513 830 1181 1561 1972 2411 2878
0 19 242 536 867 1232 1629 2055 2511 2996
20 253 558 903 1282 1693 2135 2607 3108
21 263 580 937 1330 1755 2212 2698 3214
22 272 601 970 1375 1814 2284 2784 3313
23 282 621 1001 1419 1870 2352 2865 3407
24 290 640 1031 1460 1922 2416 2941 3494
25 299 658 1059 1498 1971 2476 3011 3575
26 307 675 1086 1535 2018 2532 3077 3650
217 315 691 1111 1569 2061 2584 3137 3718
28 322 706 1134 1600 2100 2631 3192 3780
29 329 720 1156 1630 2137 2675 3242 3835
30 335 733 1176 1656 2170 2714 3286 3885
31 341 746 1195 1681 2200 2749 3326 3928
32 346 757 1211 1703 2227 2780 3360 3965
33 351 767 1226 1722 2250 2807 3389 3996
34 356 776 1240 1739 2270 2829 3414 4021
| 35 360 784 1251 1754 2287 2848 3433 4041
36 364 791 1261 1766 2301 2863 3448 4054
37 367 797 1269 1776 2312 2873 3458 4063
38 370 802 1276 1783 2319 2880 3463 4065
> 39 372 806 1281 1788 2324 2883 3464 4063
= 40 374 809 1284 1791 2326 2883 3460 4056
= 41 375 811 1286 1792 2324 2879 3453 4043
E3 42 - 376 811 1286 1790 2320 2871 3441 4026
43 376 811 1284 1786 2313 2860 3425 4004
g 44 376 810 1281 1781 2303 2846 3405 3978
45 375 808 1276 1772 2291 2828 3381 3947
46 374 805 1270 1762 2276 2808 3354 3913
47 373 801 1263 1750 2259 2784 3323 3874
48 371 796 1254 1736 2239 2757 3289 3832
49 369 790 1243 1721 2217 2728 3252 3786
50 366 783 1232 1703 2192 2696 3211 3736
51 363 776 1219 1683 2165 2661 3168 3684
52 359 767 1204 1662 2137 2624 3122 3628
53 355 758 1189 1640 2106 2585 3073 3569

54 - 351 748 1172 1615 2073 2543 3022 3508
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 619

TABLE 4 (cont.)

10%%(% ¢)

0-20 0-22 0-24 0-26 0-28 0-30 0-32 0-34
0 0 0 0 0 0 0 0
249 287 327 370 416 465 518 574
497 572 653 739 831 929 1034 1146
744 857 977 1105 1243 1389 1546 1713
989 1138 1298 1468 1650 1844 2052 2273
1232 1417 1615 1826 2052 2293 2549 2823
1471 1691 1927 2179 2447 2733 3037 3362
1706 1961 2234 2524 2834 3163 3514 3887
1937 2226 2534 2862 3211 3582 3977 4396
2163 2484 2827 3191 3578 3989 4425 4888
2383 2736 3111 3510 3933 4382 4858 5362
2597 2980 3387 3819 4276 4761 - 5273 5816
2805 3217 3654 4116 4606 5124 5671 6249
3006 3445 3910 4402 4922 5471 6050 6660
3200 3665 4157 4676 5224 5801 6409 7048
3387 3876 4392 4937 5511 6114 6748 7413
3565 4077 4616 5185 5782 6409 7067 7756
3735 4268 4829 5419 6038 6687 7365 8074
3897 4450 5030 5640 6278 6946 7643 8370
4051 4621 5219 5846 6502 7186 7899 8642
4195 4782 5396 6039 6710 7409 8136 8890
4331 4932 5561 6218 6902 7613 8351 9116
4458 5073 5714 6383 7078 7800 8547 9320
4576 5202 5855 6534 7238 7968 8723 9501
4685 5321 5983 6671 7383 8120 8879 9662
4785 5430 6100 6795 7513 8254 9017 9802
4877 5529 6205 6905 7627 8372 9137 9921
4959 5617 6298 7002 7727 8473 9238 10022
5033 5695 6380 7086 7813 8559 9323 10103
5098 5763 6451 7158 7885 8629 9391 10167
5154 5822 6510 7218 7943 8685 9443 10214
5202 5871 6559 7266 7989 8727 9479 10244
5242 5911 6598 7302 8021 8755 9501 10259
5274 5942 6627 7327 8042 8770 9510 10259
5298 5964 6645 7342 8051 8773 9504 10245
0-36 0-38 0-40 0-42 0-44 0-46 0-48 0-50
0 0 0 0 0 0 0 0
635 699 768 843 923 1009 1102 1203
1266 1395 1533 1681 - 1840 2011 2196 2396
1892 2084 2289 2509 2746 3000 3275 3571
2510 2763 3034 3324 3635 3970 4329 4717
3116 3428 3762 4119 4502 4913 5354 5828
3708 4077 4471 4892 5343 5825 6341 6895
4284 4707 5159 5640 6153 6701 7287 7915
4842 5316 5821 6358 6929 7538 8187 8880
5380 5902 6456 7044 7668 8332 9038 9788
5896 6462 7061 7696 8368 9081 9836 10636
6389 6995 7636 8313 9028 9783 10581 11424
6858 7501 8178 8892 9645 10437 11272 12150
7302 7977 8688 9435 10219 11043 11908 12815
7719 8424 9164 9939 10751 11601 12490 13419
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TABLE 4 (cont.)
10°X(¢? ¢)

Yz 0-02 0-04 0-06 0-08 0-10 0-12 0-14 0-16 0-18
#°
0 3554 3877 4176 4472 4773 5085 5411 5756 6121
1 3564 3876 4175 4471 4772 5084 5410 5754 6120
2 3552 3874 4173 4468 4770 5081 5407 5751 6117
3 3549 3871 4169 4465 4765 5077 5402 5746 6111
4 3546 3867 4164 4459 4760 5070 5396 5739 6103
5 3540 3861 4158 4452 4752 5062 5387 5729 6092
6 3534 3854 4151 4444 4743 5052 5376 5718 6080
7 3527 3846 4142 4434 4732 5041 5363 5704 6065
8 3519 3836 4131 4423 4720 5027 5349 5688 6048
9 3509 3826 4120 4410 4706 5012 5332 5670 6029
10 3498 3814 4107 4396 4691 4995 5314 5650 6007
11 3487 3801 4092 4380 4674 4977 5294 5629 5984
12 3474 3787 4077 4363 4655 4957 5272 5605 5958
13 3460 3771 4060 4345 4635 4935 5248 5579 5930

14 3445 3754 4041 4325 4613 4911 5223 5552 5900

15 3429 3737 4022 4303 4590 4886 5196 5522 5868
16 3412 3718 4001 4280 4565 4859 5167 5491 5834
17 3394 3697 3978 4256 4539 4831 5136 5458 5798
18 3374 3676 3955 4231 4511 4801 5104 5423 5761
19 3354 3653 3930 4204 4482 4769 5070 5386 5721

20 3333 3630 3904 4176 4451 4736 5034 5348 5680
21 3311 3605 3877 4146 4420 4702 4997 5308 5637
22 3287 3579 3849 4116 4386 4666 4958 5266 5592
23 3263 3552 3820 4084 4352 4629 4918 5223 5546
24 3238 3524 3789 4050 4316 4590 4877 5178 5498

25 3212 3495 3757 4016 4279 4550 4834 5132 5448
26 3184 3465 3724 3980 4240 4509 4789 5084 5397
27 3156 3434 3691 3944 4201 4466 4744 5035 5345
28 3127 3402 3656 3906 4160 4422 4696 4985 5291
29 3097 3369 3620 3867 4118 43717 4648 4933 5235

30 3066 3335 3582 3827 4075 4331 4599 4880 5179
31 3034 3300 3544 3786 4031 4284 4548 4826 5121
32 3002 3264 3505 3744 3986 4235 4496 4771 5062
33 2968 3227 3465 3701 3939 4186 4443 4714 5002
34 2934 3189 3424 3656 3892 4135 4389 4657 4940

35 2898 3150 3383 3612 3844 4084 4334 4598 4878

36 2862 3111 3340 3566 3795 4031 4278 4538 4814
37 2825 3070 3296 3519 3745 3978 4221 4478 4750
38 2788 3029 3252 - 3471 13694 3923 4164 4416 4684

39 2749 2987 3207 3423 3642 3868 4105 4354 4618

40 2710 2944 3160 3373 3589 3812 4045 4291 4551
41 2670 2901 3114 3323 3536 3755 3985 4227 4483
42 2630 2857 3066 3272 3482 3698 3924 4162 4414
43 2588 2812 3018 3221 3427 3639 3862 4096 4345
44 2546 2766 2969 3168 3371 3580 3799 4030 4275

45 2504 2720 2919 3116 3315 3521 3736 3963 4204
46 2460 2673 2869 3062 3258 3460 3672 3896 4133
47 2416 2626 2818 3008 3200 3400 3608 3828 4061
48 2372 2577 2766 2953 3142 3338 3543 3759 3989
49 2326 2528 2714 2898 3084 3276 3478 3690 3916

50 2281 2479 2662 2842 3025 3214 3412 3621 3843
51 2234 2429 2609 2785 2965 3151 3345 3551 3769
52 2188 2379 2555 2729 2905 3087 3279 3480 3695
53 2140 2328 2501 2671 2844 3024 3211 3410 3621
54 2092 22717 2446 2614 2784 2960 3144 3339 3546
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A TRANSFORMATION OF THE HODOGRAPH EQUATION 621

TABLE 4 (cont.)

10°X(g?, ¢)
0-20 0-22 0-24 0-26 0-28 0-30 0-32 0-34
6511 6930 7380 7866 8393 8967 9594 10281
6510 6928 7378 7864 8392 8965 9592 10279
6506 6924 7374 7859 8386 8959 9586 10272
6500 6917 7366 7851 8377 8950 9575 10260
6491 6908 7356 7840 8365 8936 9560 10244
6480 6896 7343 7826 8349 8919 9541 10223
6466 6881 7326 7808 8330 8898 9518 10197
6450 6363 7307 7787 8307 8873 9490 10167
6432 6843 7285 7763 8281 8844 9459 10133
6411 6820 7261 7736 8252 8812 9424 10095
6388 6795 7233 7706 8219 8777 9386 10052
6362 6767 7203 7674 8184 8738 9343 10006
6334 6737 7170 7638 8145 8696 9297 9956
6304 6704 7135 7600 8103 8651 9248 9902
6272 6669 7097 7559 8059 8602 9195 9844
6237 6632 7057 7515 8011 8551 9139 9783
6200 6593 7014 7469 7961 8496 9080 9719
6162 6551 6969 7420 7908 8439 9018 9652
6121 6507 6922 7369 7853 8380 8953 9582
6079 6461 6872 7315 7795 8317 8886 9508
6034 6413 6820 7260 7135 8252 8816 9433
5988 6363 6767 7202 7673 8185 8743 9354
5940 6312 6711 7142 7608 8116 8668 9273
5890 6258 6653 7080 7542 8044 8591 9190
5838 6203 6594 7016 7473 7970 8512 9105
5785 6146 6533 6950 7403 7894 8430 9017
5730 6087 6470 6883 7330 7817 8347 8928
5674 6027 6405 6814 7256 7737 8262 8836
5616 5965 6339 6743 7181 7656 8175 8743
5557 5902 6272 6671 7103 7574 8086 8648
5497 5837 6203 6597 7024 7489 7996 8552
5435 5771 6132 6522 6944 7404 7905 8454
5372 5704 6060 6446 6863 7316 7812 8354
5308 5635 5988 6368 6780 7228 7717 8254
5242 5566 5913 6289 6696 7138 7622 8152
0-36 0-38 0-40 0-42 0-44 0-46 0-48 0-50

11037 11872 12798 13828 14981 16275 17736 19394
11035 11869 12795 13825 14977 16271 17731 19388
11027 11861 12785 13814 14965 16257 17715 19370
11014 11846 12769 13796 14944 16234 17690 19340
10996 11826 12746 13771 14916 16202 17654 19300

10972 11800 12718 13739 14881 16162 17608 19248
10944 11769 12683 13701 14837 16114 17553 19185
10911 11733 12643 13656 14787 16057 17489 19113
10874 11691 12597 13604 14730 15993 17417 19031
10832 11645 12545 13547 14666 15922 17337 18941

10785 11593 12489 13484 14596 15844 17250 18843
10734 11537 12427 13416 14521 15760 17156 18738
10679 11477 12360 13343 14440 15670 17056 18626
10620 11412 12289 13264 14353 15574 16950 18508
10557 11344 12214 13182 14262 15473 16838 18384
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622 T. M. CHERRY ON
TABLE 4 (cont.)
—10°Y (¢ ¢)
q? 0-02 0-04 0-06 0-08 0-10 0-12 0-14 0-16 0-18
AN
0 0 0 0 0 0 0 0 0 0
1 58 60 63 65 67 69 71 73 76
2 115 121 125 130 134 138 142 147 151
3 173 181 188 195 201 207 214 220 226
4 230 241 250 259 268 276 285 293 301
5 287 301 313 324 334 345 355 366 376
6 345 361 375 388 401 414 426 438 451
7 402 421 437 452 467 482 496 511 525
8 459 480 499 516 533 550 566 583 599
9 515 540 560 580 599 617 636 654 673
10 572 599 622 643 664 685 705 725 746
11 628 658 683 706 729 752 774 796 818
12 684 716 744 769 794 818 842 866 890
13 740 774 804 831 858 884 910 936 962
14 796 832 864 893 922 949 977 1004 1032
15 851 890 923 955 985 1014 1044 1073 1102
16 906 947 982 1016 1047 1078 1109 1140 1171
17 960 1004 1041 1076 1109 1142 1175 1207 1240
18 1014 1060 1099 1136 1171 1205 1239 1273 1307
19 1068 1116 1157 1195 1232 1267 1303 1338 1374
20 1122 1171 1214 1254 1292 1329 1366 1403 1440
21 1174 1226 1270 1312 1351 1390 1428 1466 1504
22 1227 1280 1326 1369 1410 1450 1489 1529 1568
23 1279 1334 1382 1426 1468 1509 1550 1590 1631
24 1330 1387 1436 1482 1525 1567 1609 1651 1693
25 1381 1440 1490 1537 1581 1625 1668 1711 1753
26 1432 1492 1543 1591 1637 1682 1726 1769 1813
27 1482 1543 1596 1645 1692 1737 1782 1827 1872
28 1531 1594 1648 1698 1746 1792 1838 1883 1929
29 1580 1644 1699 1750 1799 1846 1893 1939 1985
30 1628 1693 1749 1801 1851 1899 1946 1993 2040
31 1675 1742 1799 1852 1902 1951 1999 2046 2094
32 1722 1790 1848 1901 1952 2002 2050 2099 2147
33 1768 1837 1896 1950 2002 2052 2101 2150 2198
34 1814 1884 1943 1998 2050 2100 2150 2199 2248
| 35 1859 1929 1989 2045 2097 2148 2198 2248 2297
36 1903 1974 2035 2090 2144 2195 2245 2295 2345
37 1946 2018 2079 2136 2189 2241 2291 2342 2392
38 1989 2062 2123 2180 2233 2285 2336 2387 2437
39 2031 2104 2166 2223 2276 2329 2380 2430 2481
40 2072 2146 2208 2265 2319 2371 2422 2473 2524
41 2113 2186 2249 2306 2360 2412 2464 2514 2565
42 2153 2226 2289 2346 2400 2452 2504 2554 2605
43 2192 2265 2328 2385 2439 2492 2543 2593 2644
44 2230 2304 2366 2423 2477 2529 2580 2631 2681
45 2267 2341 2403 2460 2514 2566 2617 2668 2718
46 2304 2377 2439 2496 2550 2602 2652 2703 2753
47 2340 2412 2474 2531 2584 2636 2687 2737 2786
48 2374 2447 2509 2565 2618 2670 2720 2769 2819
49 2408 2481 2542 2598 2651 2702 2752 2801 2850
50 2442 2513 2574 2630 . 2682 2733 2782 2831 2880
51 2474 2545 2605 2660 2712 2763 2812 2860 2909
52 2505 2576 2636 2690 2742 2791 2840 2888 2936
53 2536 2606 2665 2719 2770 2819 2867 2915 2962

54 2565 2635 2693 2746 2797 2846 2893 2940 2987


http://rsta.royalsocietypublishing.org/

a
s \
A

ma \

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

A \

4
y

a
, §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

A TRANSFORMATION OF THE HODOGRAPH EQUATION 623

TABLE 4 (cont.)

—10°Y(¢% ¢)
i 0-20 0-22 - 0-24 0-26 0-28 0-30 0-32 0-34
AN

0 0 0 0 0 0 0 0 0
1 78 80 82 84 87 89 92 94

2 155 160 164 169 173 178 183 188

3 233 239 246 253 260 267 274 282

4 310 319 328 337 346 356 366 376

o 5 387 398 409 420 432 444 456 469
d 6 464 477 490 - 504 518 532 546 562

b 7 540 555 571 586 602 619 636 654

8 616 633 651 669 687 706 725 745

> 9 692 711 730 750 771 792 813 836
: 10 767 788 809 831 854 877 901 925
— 11 841 864 888 912 936 961 987 1014
O 12 915 940 965 901 1018 1045 1073 1102
O 13 988 1015 1042 1070 1098 1127 1157 1188
w 14 1060 1089 1118 1147 1178 1209 1241 1274
15 1132 1162 1193 1224 1256 1289 1323 1358

16 1203 1235 1267 1300 1334 1368 1404 1441

17 1273 1306 1340 1375 1410 1446 1484 1522

L 18 1342 1377 1412 1448 1485 1523 1562 1602
0 19 1410 1446 1483 1521 1559 1599 1639 1681
20 1477 1515 1553 1592 1632 1673 1715 1758
21 1543 1582 1622 1662 1703 1746 1789 1834
22 1608 1648 1689 1731 1773 1817 1862 1908
23 1672 1713 1755 1798 1842 1887 1933 1980

24 1735 1777 1820 1864 1909 1955 2002 2051
25 1796 1840 1884 1929 1975 2022 2070 2120

26 1857 1902 1947 1993 2040 2088 2137 2188
27 1916 1962 2008 2055 2102 2151 2202 2253

28 1975 2021 2068 2115 2164 2214 2265 2317
29 2032 2079 2126 2175 2224 2274 - 2326 2380
30 2087 2135 2183 2232 2282 2334 2386 2440

31 2142 2190 2239 2289 2339 2391 2444 2499

32 2195 2244 2293 2344 2395 2447 2501 2556
33 2247 2296 2346 2397 2449 2502 2556 2612
o 34 2298 2347 2398 2449 2501 2554 2609 2666

| . :

! VZ 0-36 0-38 0-40 0-42 0-44 0-46 0-48 0-50

¢0

0 0 0 0 0 0 0 0 0
1 97 100 102 105 108 112 115 118
2 194 199 205 210 216 223 229 236
3 290 298 307 315 324 334 344 354

4 386 397 408 420 432 444 457 471
5 482 496 510 524 539 554 570 587
6 577 593 610 627 645 664 683 703
7 672 690 710 730 751 C 772 795 818
8 766 787 809 832 855 880 905 932
. 9 858 882 907 932 959 986 1015 1044
° 10 951 977 1004 1032 1061 1091 1123 1156
11 1042 1070 1100 1130 1162 1195 1230 1266
12 1132 1162 1194 1227 1262 1298 1335 1374
13 1220 1253 1287 1323 1360 1398 1438 1481
14 1308 1343 1379 1417 1456 1498 1540 1586
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TABLE 5. DEGREE MEASURE OF 0 =¢ — 2a arc tan gsin ¢ FOR a=0-724745 (y=1-4)

P 1—qcos ¢’
-~ & 0-06 0-12 0-18 0-24 0-30 0-36 0-42 0-48
— PN
§ N 10 5-35 244  —045  —353 — 691  —1071  —1505  —20:06
@) |- 20 11-00 5-56 0-33 —5-00 —10-59 —16-52 —22-83 —29-54
= 25| 30 17-19 9-86 313 —341 - 9-89 —16-36 —22-83 —29-28
— 40 24-10 15-56 8-11 1-22 — 528 —11-48 —17-40 —23-05
= Q) 50 31-80 22-68 15-10 8-38 2-27 - 335 — 855 —13-40
T @) 60 40-30 31-09 23-76 17-48 11-94 6-97 2-45 — 1-68
w
= 80 59-50 51-08 44-81 39-70 35-36 31-57 28-22 25-21
100 81-12 74-14 69-18 65-25 61-99 59:19 56-74 54-57
120 104-49 99-21 95-56 92-72 90-40 88-42 86-70 85-18
140 129-05 125-53 123-14 121-31 119-81 118-55 117-45 116-49
160 154-35 152-60 151-41 150-51 149-78 149-16 148-67 148-16
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